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Topological Terrain Map Resolution:  
Intervisibility, Crest, and Military Crest  
Donald R. Barr1, Bard Mansager2, William P. Fox, Thomas Riddle 
 
 
Introduction 
 
The depiction of terrain in computerized combat simulation models generally 
takes the form of a discrete approximation. The modeled terrain surface is often 
represented by a step function over a two-dimensional domain covered by a  
tessellation of squares or hexagons. Military field testing applications use such 
digitized terrain maps in connection with target tracking enhancements. Such 
uses include improvements in accuracy of tracking in the elevation dimension 
(“z-axis”) using Global Positioning System (GPS--satellite) information. Digital 
maps are used in many modeling applications in connection with computer 
displays of units on or above the terrain. 
 
In the case where the domain of the approximating terrain surface is covered by 
squares, it is common to designate the terrain resolution in terms of the length of 
a side of such a square. Thus, “100-meter terrain”, refers to an approximating 
function with domain partitioned into squares 100 meters on a side. As the 
resolution is increased (25-meter and 3-meter terrain data bases are common), 
the size of the terrain data base increases exponentially. This drives up the cost 
of development of the database for a given size area, as well as the cost of 
storing the database and using it in a modeling application. 
 
An important determinant of interaction of opposing combat forces is their 
intervisibility. Intervisibility calculations made between two points on the ground 
using a given digital terrain database can provide approximations of how much 
of a given unit (such as an Abrams tank or an infantry squad) located at one 
point is exposed to visual contact by an opposing unit an another point. Such 
calculations are computationally expensive, generally involving algorithms that 
step along a vector (ray) between the points, looking for intervening terrain 
which would interrupt straight line-of-sight (LOS) between the points. The cost of 
computing intervisibility between many pairs of opposing units, as the units move 
across the terrain at time intervals, increases rapidly as the terrain resolution is 
increased. 
 
The question to be considered for a combat modeler is, “How much terrain 
resolution is enough?” Some combat modelers insist that there can never be too 
much resolution. Other modelers believe that there is a point of diminishing 
returns. The answer probably lies in the modeling application. For driving 
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detailed realistic visual depictions of moving units on actual terrain on a 
computer display, greater resolution may be necessary. For combat models 
requiring target detection and engagements in a computer simulation, there may 
be only marginal value in terrain resolution beyond some minimum threshold 
value. 
 
We concentrate on the issue of the accuracy of intervisibility approximations as 
a function of terrain resolution. Many modeling studies for the Army have been 
done to attempt to characterize this resolution issue for combat modeling in 
general. This is an attempt to better characterize the issue in regards to 
intervisibility on the simulated battlefield. We also provide examples that relate 
back to military doctrine and tactics to motivate the user of this module. 
 
Intervisibility On Two Dimensional Terrain 
 
We begin by imagining a creature living on a two dimensional (x and z) terrain 
represented by the Cartesian graph of a function f over a domain D consisting of 
a bounded interval of real numbers. At each point x in D, define the 
“intervisibility”, Ι(x), to be the total length of the arc segments consisting of the 
points (z, f(z)) for z in D that are visible from the point (x, f(x)). A point (z, f(z)) is 
intervisible with (x, f(x)) if there is no point (v, f(v)) such that v is between x and z 
and f(v) is greater than the height of the line segment connecting the two given 
points at v. That is, for all v between x and z. 
 

f(v) < f(x) + (f(x)-f(z))(v-x) / (x-z). 
 

 In a computer modeling algorithm this condition is checked by comparing the 
three slopes between pairs of points selected from the two given points and the 
test point  (v, f(v)). 
 
A plot of points (x, Ι(x)), which we call the “intervisibility curve” provides global 
information about the intervisibility characteristics of the terrain f. For example, 
consider the terrain of a flat plain over a finite region with a v-shaped valley 
running through it. The inter-visibility curve of the cross-sectional normal to the 
axis of the valley is shown in Figure 1. Then Ι(x) (see Figure 1) will be a step 
function: for all x-values under the flat plain, Ι(x) will be the length of the arc 
associated with the plain. All points on the plain are visible from points on the 
plain, and no points in the valley can be seen from interior points on the plain. At 
the edge of the valley, Ι(x) jumps to include arc lengths of the valley since we 
can now see into the valley from the edge. At points within the valley Ι (x) 
becomes a constant value. This shows Ι (x) may have points of discontinuities 
(points where the derivative does not exist). 
 



 197

Intervisibility for Simple Terrain 
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Figure 1. Simple terrain model (Cross-section of a plain with a valley; show in 
bottom curve) and corresponding intervisibility curve (top curve). 
 
As a second example, consider the function f(x) = |cos(π x)| over the domain D = 
[0,1]. Then Ι (x) starts at zero at the lower end point, increases to a maximum 
near x = 1/3, then drops rapidly to zero at x = 1/2 (see Figure 2). Symmetry of 
f(x) about x=1/2 implies corresponding symmetry of Ι. Over [0, 1/2], this is an 
example of what the Army Field Manual 21-26 calls “convex terrain.” Note also 
that the maximum intervisibility occurs well down the slope from the crest of the 
hill at x = 0. 
 
Absolute Cosine Terrain Intervisibility Curve 
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Figure 2.  Intervisibility model (dotted curve) for one period of the absolute 
cosine terrain (solid curve). Note the maximum intervisibility occurs at x = 1/3. 
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Terrain Resolution and Computation of ΙΙ (x) 
 
In the case of this two dimensional terrain, digitized terrain can be characterized 
by the height of terrain at a finite set of points Xn = {x0, x1,...,xn}, where n is a 
measure of the resolution of the map. We order the x’s sorted in increasing order 
and assume they are equally spaced within D. The terrain map supported by the 
database, {(xi,f(xi)}: i=0,1,2,...,n} is a polygon formed by connecting adjoining 
points of the form (xi,f(xi)), (xi+1,f(xi+1)); this polygon approximates the actual 
terrain {(x,f(x)): x∈ D}. The digital terrain map approximation of intervisibility at 
point x, Ι (x), is then the sum of the lengths of the polygon segments visible from 
(x,f(x)). 
 
Let’s consider one of our previous functions, f(x) = |cos(π x)| over the domain D 
= [0,1], over two periods. The approximating intervisibility curves for n=20, 50, 
and 400 are shown in Figures 3 through 5. The most accurate approximating 
intervisibility curve model is shown in Figure 5. We note the n=10 is a crude 
approximation. Trying values of n > 100 did not significantly improve the 
resolution. Thus, we might conclude the resolution beyond n=100 is not cost 
effective to model this terrain’s intervisibility. 
 
 
Military Doctrine Involving Intervisibility 
 
As long as soldiers have fought battles, combatants have sought to control 
terrain features that rise above the battleground. From these decisive points, a 
military force has a distinct advantage. Defending from the high ground required 
the attacker to expend additional effort to negotiate the upward slope while the 
defender concentrates solely on firing at the attacking force. From the high 
ground, an occupying force can see the battlefield from an enhanced 
perspective enabling the force to gain information about the enemy while 
denying it to the enemy. Early detection, for example, gives a leader an 
opportunity to seize control of the battle. The leader can gain surprise over an 
unsuspecting enemy or gain time to alter their course of action. 
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Absolute Cosine Terrain Intervisibility Curve 

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

54.72744

6.12303e-017

F
i

arc
i

10 ,y
i

y
i

 

 
Figure 3.  Intervisibility with N = 20. 
 
   
Absolute Cosine Terrain Intervisibility Curve 
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Figure 4. Intervisibility with N = 50. 
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Absolute Cosine Terrain Intervisibility Curve 
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Figure 5. Intervisibility with N = 400. 
 
The US Army has long understood this principle and has included it in its 
doctrinal literature. Current US Army FM 101-5-1, defines “key terrain” to be 
“...any locality or area that the seizure, retention, or control of which affords a 
marked advantage to either combatant.” 
 
Certain terrain is considered much more important than other terrain and is 
called “decisive” if it can have an extraordinary effect upon battle. It is essential 
to control decisive terrain because failure to do so will cause the force to fail in 
its prescribed mission. 
 
Depending upon the particular mission, hilltops are frequently listed as both key 
and decisive terrain. During the Anzio campaign in WWII, the Alban Hills were 
the decisive and key terrain needed for the allies to succeed. Seizing those hills 
was part of the OPORD but it was not carried out.  Once key terrain has been 
identified, the commander must further analyze the terrain features. The goal 
might be to maximize LOS or distance of unimpaired vision. By doing this, the 
commander allows the detection assets to operate at their fullest capabilities. It 
also allows weapons to be used at maximum possible ranges. There are two 
properties of hills that we are concerned with: the “topographical crest”--the 
highest point of a hill, ridge, or mountain; and the “military crest”--the area on the 
forward slope of a hill or ridge from which maximum observation covering the 
slope down to the base can be obtained. 
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The location of the topographical crest remains fixed at the highest point of the 
terrain; however, the military crest’s location is dependent upon the type of hill 
slope. FM 21-26, has four classifications of slopes of interest to military 
operations. They are defined as: uniform gentle, uniform steep, concave, and 
convex. Gentile uniform slopes allow the defender to fire their weapons 
approximately parallel to the ground at a height of 1 meter. This type of fire is 
known as grazing fire and is considered to be the most effective type of direct 
fire. As the slope increases, the ability to use grazing fire decreases and 
becomes negligible when the slope reaches the uniform steep category. From a 
position on top of a concave slope, the defender can observe the entire slope 
and terrain at the bottom, but cannot use grazing fires. The topographical and 
military crests are at the same location in this case. The situation is different for 
a convex slope; the defender not only has limited chance for grazing fires but 
also has restricted LOS. The defender wanting to maximize LOS must move 
down to the military crest. These are depicted in Figures 6-7, respectively.  
Successful military operations are doctrinally dependent upon taking advantage 
of the terrain where the forces fight. 
 
Calculations to find the topographical crest of the hill can be easily 
accomplished through models using calculus or numerical algorithms. The 
topographical crest is located where the first derivative of the function, f’(x)=0 
and the second derivative of the function, f”(x) <0. For the function, y = cos(π x) 
over D=[0,1]. We find the first derivative y’=π sin(π x) and set y’ equal to zero. 
This is satisifed at x=0. The second derivative y” = -π2 cos(π x) which is < 0 at 
x=0. Therefore the topographical crest of this function is located at x=0 with a 
functional value of 1. 
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Figure 6. Concave Slope from FM 21-26 (Jan 1969) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Convex Slope from FM 21-26 (Jan 1969) 
 
Now, consider our example function f(x) = |cos(π x)| over the domain D = [0,1]. 
This function is not differentiable over the entire region and therefore, calculus 
cannot be used to find the top of the hill. In cases like this, a one-dimensional 
search method might be used to find the top of the hill within some tolerance. 
Many modeling methods exist (such as golden section and Fibonacci’s method). 
We will illustrate the simple and direct method (not computationally as efficient 
as the others) of bisection. Bisection, like the other modeling methods, requires 
the function to be segmented into unimodal intervals. Unimodal means only one 
peak or one valley in a given interval. Thus, we will separate this function into 
intervals [0, 1/2] and [1/2, 1]. The bisection algorithm is shown below. 
 
BISECTION ALGORITHM 
 
Step 1. Select your unimodal interval [a,b] and a tolerance t (small like .02). 
Step 2. Compute the mid-point  (a+b)/2 and then offset be a small value, δδ.  

   Let δδ be .01, so 
   x1= midpoint - δδ 
   x2=midpoint + δδ 

Step 3. Find f(x1) and f(x2).  
 (a) If f(x1) > f(x2), then let a=a and b=x2 and continue. 
 (b) If f(x2) > f(x1), then let a=x1 and b=b and continue. 

Step 4. If (b-a) < tolerance then quit, otherwise find new midpoint and  
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  repeat steps 2 and 3. 
 
Results 
 
a B Midpoint x1 x2 f(x1) f(x2) 

0 0.5 0.25 0.24 0.26 0.72923 0.684849
0 0.26 0.13 0.12 0.14 0.929847 0.904922
0 0.14 0.07 0.06 0.08 0.982305 0.968615
0 0.08 0.04 0.03 0.05 0.995566 0.987701

 
We conclude that in the interval [0, 1/2] the maximum lies in the final smaller 
interval of [0, 0.08]. By changing the tolerance levels, we can make the final 
interval arbitrarily small.  
 
The calculations of “intervisibility curves” shed some light upon the location of 
the military crest. In our previous example, we noted that the maximum 
intervisibility occurred about 2/3 of the way from the crest to the bottom of the 
valley, well away from the topographical crest. 
 
  
Exercises 
 
Use your own program or the MATHCAD template from the appendix to solve 
these exercises. 
 
1. Find the topological and military crest for a terrain characterized by  
f(x) = |Sin(3πx)|  over D=[0,1]. 
 
2. Find the topological and military crest for a terrain characterized by  
f(x) = |Cos(3πx)|  over D=[0,1]. 
 
3. Find the topological and military crest for a terrain characterized by  
f(x) = |Sin(3πx)|(1-x2)  over D=[0,1]. 
 
4. Find the topological and military crest for a terrain characterized by  
f(x) = ( 1 + sin 6πx))(1-2x/3) over D=[0,1]. 
 
5. Describe how you as a platoon leader can use these tools to help in your 
military decision making. 
 
6. What over applications or use might there be for intervisibility? Briefly 
describe the application and the use of intervisibility. 
 
7. Develop an algorithm to compute intervisibility in higher dimensions. 
 

 


