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Abstract

This is the third part of a series of papers that provide a comprehensive survey of the techniques for tracking maneuvering
targets without addressing the so-called measurement-origin uncertainty. Part | [1] and Part 11 [2] deal with general target mo-
tion models and ballistic target motion models, respectively. This part surveys measurement models, including measurement
model-based techniques, used in target tracking. Models in Cartesian, sensor measurement, their mixed, and other coordi-
nates are covered. The stress is on more recent advances — topics that have received more attention recently are discussed in
greater details.
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1 Introduction

This paper is the third part of a series that provides a comprehensive survey of techniques for maneuvering target tracking
without addressing the so-called measurement-origin uncertainty.

Most maneuvering target tracking techniques are model based; that is, they rely on explicitly two descriptions: one for
the behaviors of the target, usually in the form of a motion (or dynamics) model, and the other for our observations of the
target, known as an observation model. A survey of target motion models in general and ballistic target motion models in
particular has been reported in Part | [1] and Part Il [2], respectively. This part surveys the measurement models and the
relevant modeling techniques.

More precisely, this paper surveys the models of measurements characterized by the following: they are truly originated
from the “point target” under track (i.e., there is no origin uncertainty); and they are measurements, rather than observations
in a more general sense, which may contain other information, including target features as provided by an imaging sensor.
Also, this survey is concerned with the mathematical models as a basis for maneuvering target tracking. For example, their
other applications are not addressed and the actual sensor models are not of concern. Further, this survey includes some
aspects of estimation and filtering techniques that are highly dependent on and thus hardly separable from the measurement
models.

As in our survey of motion models [1, 2], we highlight underlying ideas and try to clarify both explicit and implicit
assumptions involved in each model, in an attempt to reveal pros and cons of the models. A considerable amount of discussion
is given towards this end, much of which cannot be found elsewhere. We remind the reader, however, that these discussions,
although intended to be accurate and balanced, are obviously not necessarily free of our personal preference and bias. Also,
we focus on more recent advances in measurement models — topics that have received more attention recently are discussed
in greater details. Furthermore, some models and techniques presented in this paper have not yet appeared elsewhere.

As stated in Part I, we appreciate receiving comments and any missing material that should be included in this part.

The rest of the paper is organized as follows. Sec. 2 describes measurement models in the original sensor coordinates. Sec.
3 provides a general view of the roles of coordinate systems in maneuvering target tracking. Linearized measurement models
in (Cartesian-sensor) mixed coordinates are presented in Sec. 4. Measurement models converted to Cartesian coordinates are
covered in Sec. 5. Pseudomeasurement modeling techniques are surveyed in Sec. 6. Finally, concluding remarks are given in
Sec. 7.

*Research supported by ONR Grant N00014-00-1-0677 and NSF Grant ECS-9734285.




2 Modesin Sensor Coordinates

Sensors used for target tracking provide measurements of a target in a natural sensor coordinate system (CS) or frame.
In many cases (e.g., with a dish radar), this CS is spherical in 3D or polar in 2D with range r, bearing (or azimuth) b,
elevation e (Fig. 1), and possibly range rate (or Doppler) . (We do not explicitly consider direct measurements of target
height, as provided by, e.g., Mode C. Such measurements are usually not available for non-cooperative targets.) Not all these
measurement components are available from all sensors. For example, some active sensors may not provide range rate or
elevation angle, while passive sensors provide only angles (although passive ranging is possible). We consider generally the
3D case — the respective 2D case follows in a straightforward manner.

In the sensor coordinates, these measurements are generally modeled in the following form of additive noise

r o= r+uv, (1)
b = b+uy 2
e = e+, 3)
r o= r+u (4)

where (r, b, €) denotes the error-freetruetarget position in the sensor spherical coordinates, and v ., vy, v, vy are the respective
random measurement errors. We assume these measurements are made at time ¢, (or k for short) but we will omit the time
index k whenever possible without ambiguities. It is normally assumed that these measurement errors in the sensor CS are
zero-mean, Gaussian distributed, and uncorrelated:

v ~N(0,Ry) with Ry = cov(vy) = diag(o?, o7, 02, 03) (5)

e’ r

where v, = [vy, vp, e, vi]}, is the error vector? at time k and {v } is a white noise sequence.

Fig. 1. Sensor coordinate systems.

The above measurement model in spherical coordinates is most common for track-while-systems, e.g., rotating surveil-
lance radars [3, 4, 5]. For scan-while-track surveillance systems [6], such as phased array radars [7, 8, 9], the sensor provides
measurements in terms of the direction cosines v and v — instead of the bearing b and elevation e — of the target position
(Fig. 1) relative to reference axes. The RUV measurement model is as given above with (2)—(3) replaced by

U = u+y, (6)
= \2 —|— ’U,U (7)

where u and v denote the error-free target position direction cosines, and v, v, are the respective measurement errors.
Sometimes a third direction cosine measurement w = w + v, is used for convenience, albeit redundant (w = V1 — u2 — v?).

Lother conventions are also used. For example, the bearing may be defined as the angle from the y axis, rather than from the z axis.
2\\e use Sans Serif letters (e.g., z) to denote ideal error-free quantities and bold-face letters to denote vectors.
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It is also normally assumed that the errors are zero-mean, Gaussian distributed, and uncorrelated:

v ~N(0,R;) with Ry, = cov(vy) = diag(o2, o3, 02, 02) (8)
with v, = [vr,vu,vv,w];ﬂ.
Note that the RUV-CS is not orthogonal. Nevertheless, the above uncorrelatedness assumption cov(v ;) = diag(o2, o2,
o2, o) is well justified by the fact that r, u, and v are measured by three physically independent systems.
The above two models arise naturally from the measurement process. They are linear and Gaussian and can be written
compactly in vector-matrix notation

z=Hx+v, v ~N(0,R) 9)

where z = [r, b, e, 7 orz = [r,u,v,7]', x = [r,be,i,...] orx = [r,u,v,f,...]', v = [v,,0p,0e,0:] OF v =
[Uy, Uy, Uy, v,a]', H =[I1,0], and I is an identity matrix and O is a zero matrix.

Range and angle measurements may have vastly different accuracies. For example, a phased array radar has range mea-
surements much more accurate than angle measurements — its error ellipsoid looks like a pancake normal to the range vector;
the situation is reversed for a continuous-wave radar, which often has a cigar-shaped error ellipsoid along the range vector
[8].

This linear model is completely uncoupled across different coordinates. This is highly desirable for estimation and fil-
tering in a number of aspects. For example, efficient parallel processing may be accomplished with little or no performance
degradation. More important, coordinate-decoupled filters may be implemented that mitigate the possible ill conditioning
arising from the vastly different accuracies in measuring range and angles [8]. These decoupled filters may possibly outper-
form the theoretically superior full-blown “optimal” filters in the presence of really ill conditioning.

3 Trackingin Various Coordinates

Various coordinate systems (CS) have been used in target tracking, including the Earth-centered inertial (ECI), Earth-
centered (Earth) fixed (ECF, ECEF, or ECR), East-North-Up (ENU), and radar face (RF) coordinate systems. A concise
description of these coordinate systems has been given in Part Il [2]. Many factors affect the selection of a coordinate
systems [8, 10, 11, 9]. The ENU-CS is a common choice for tactical systems with relatively limited sensor motion, such as
in a platform-centric system. The ECI-CS, along with its variant ECF-CS, is a typical choice for a strategic system involving
multiple platforms.

As far as tracking accuracy is concerned, the probably best choice of a coordinate system in principle is to align its
coordinates to the principal axes of the tracking error ellipsoid [8]. This will avoid the corruption of an accurate estimate
component by inaccurate ones. It also provides a good framework against ill conditioning. Since these principal axes usually
vary with respect to time in a complex way, a sensible strategy is to align the coordinates to the principal axes of either
the measurement error ellipsoid or dynamic error ellipsoid, depending on which error has more important directionality
properties. Following this principle, several coordinate systems were discussed in [8] in the context of a single sensor,
including radar-oriented, target-oriented, and their combinations.

A measurement is often described in a sensor reference frame, which is usually stabilized relative to the motion of the
sensor, even if a different CS is selected for tracking purposes. It is in general different from a platform (or site) CS (e.g., the
ENU-CS) when multiple sensors are involved in the platform (e.g., a ship). While the geographical ENU frame centered at a
sensor is convenient for a rotating track-while-scan radar, the sensor-specific radar face CS is more often used with a phased
array radar, where x and y axes are in the radar face plane and z axis along the boresight direction.

For detailed considerations of the coordinates systems and the respective transformations, the reader is referred to [7, 8,
10, 12, 11, 9].

In the sequel, by a Cartesian coordinate system, we mean a generic one unless otherwise is stated explicitly; and by
a sensor frame (or CS), we mean non-Cartesian (spherical or RUV) CS in which the measurements are available directly
without coordinate transformation.

Target motion is best described in a Cartesian CS, but measurements are available physically in a sensor CS. As such, there
are basically four possibilities of do tracking: tracking in mixed coordinates, in Cartesian coordinates, in sensor coordinates,
and in other coordinates. These are described next.



3.1 Trackingin Mixed Coordinates
This is the most popular approach. The target dynamics and measurements are modeled by
z = hx)+v (10)

where the target state x and process noise are in the Cartesian coordinates, but measurement z and its additive noise v are in
the sensor coordinates®. Let (x,, z) be the true position of the target in the Cartesian coordinates. For the case of spherical
measurements, we have z = [r, b, e, #]" and h(x) = [r,b, e, {]' = [h,, hp, he, h:]’ with

hy = r=+x%2+y2+ 22 (11)

hy = b=tan! % (12)

he = e=tan ! —— (13)
Va2 +y?

h, = = w (14)

Vv +y?+ 22
For RUV measurements, we have z = [r, u, v, ] and h(x) = [r,u,v,t]" = [hy, hu, hy, h;] With

T

hu = u= Va2 +y? + 22 (49
hy = v= 4 (16)
/Z’Z + yZ + ZZ
(and h, = w = ——-%——). Clearly the measurement models are nonlinear and coupled across Cartesian coordinates,

although the measurement noise remains zero mean, Gaussian, and uncorrelated because measurements are in the sensor
coordinates.

Most nonlinear estimation and filtering techniques, such as the extended Kalman filters (EKF), for maneuvering target
tracking have been applied in this framework. Those based on measurement models are addressed in subsequent sections.
Many other techniques are covered in subsequent parts of this survey series. A typical implementation of the EKF in mixed
coordinates (Cartesian state and spherical measurements) can be found in [13].

3.2 Trackingin Cartesian Coordinates

In this approach, the measurements in the sensor coordinates are converted to the Cartesian coordinates for tracking. Clearly,
any measurement expressed in the sensor coordinates has an exact and equivalent representation in the Cartesian coordinates.
Letx, = [z,y, 2]’ = Hx be the equivalent representation in the Cartesian coordinates of the error-free sensor measurement
(r,b,e) or (r,u,v), with target state x and some H, for example, H = [I, O] if x = [z,y,z, ...]". Clearly, x, is in fact
the true position of the target in the Cartesian coordinates, not known to us. Once the noisy measurements  of the target
position are converted to the Cartesian coordinates (i.e., the noisy measurements originally available in sensor coordinates
are expressed in the Cartesian coordinates), the measurement equation takes the following “linear” form in the Cartesian
coordinates: z. = x, + v, that is,

z. = Hx + v, @an

This measurement is sometimes referred to as a pseudolinear measurement. This model apparently “eliminates” the need to
handle nonlinear measurements, in contrast to the above approach of tracking in mixed coordinates. The major advantage of
this approach is that a linear Kalman filter then can be applied if the dynamics is linear.

Prior to [14] the measurement noise v . was crudely treated to have zero mean and a covariance determined by a first-order
Taylor series expansion. Since then several techniques have been developed to compute or account for the nonzero mean and
the covariance more accurately (see, e.g., [14, 15, 16, 17, 18, 19]). These techniques are surveyed in Sec. 5.

We emphasize that the measurement noise v.. is in general not only coupled across coordinates, non-Gaussian, but also
state dependent. This state dependency is probably more important but is largely ignored or overlooked in the literature

3This measurement model with additive noise corresponds to (9). The noise v is not necessarily in the sensor frame if the more general model z =
h(x, v) is used.
4That is, the actual observed values (i.e., realizations), not the observables as (random) variables.
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beyond its implicit use in the computation of the first two moments of v .. Due to the nonlinear dependency of v . on the state
X,, this measurement model is in fact nonlinear. As a result, even if the measurement conversion is done ideally with exact
knowledge of the (state-dependent) first two moments of v, it is still an illusion that the application of the Kalman filter here
in the case of linear dynamics yields optimal results. Nevertheless, since the state dependence (i.e., nonlinearity) exists only
in the measurement noise v, rather than in the measurement function h(-), it seems reasonable to expect that its impact on
tracking performance is relatively smaller, as compared to the nonlinearity in h(-) when handled by most popular nonlinear
filtering techniques. On the other hand, a major drawback of this approach stems from a lack of available techniques to handle
measurements with state-dependent, non-Gaussian errors, whereas abundant techniques are available for measurements with
nonlinear h(-). We have developed an extension of the Kalman filter for such problems that explicitly accounts for the state
dependence of the measurement noise more effectively, as reported in [20].

Another weakness of this approach is that the conversion from sensor to Cartesian coordinates requires knowledge of
range. For angle-only measurements, an estimated range can be used. However, the converted measurements have a degraded
accuracy when an inaccurate range is used, such as for passive sensors or range-denial countermeasures. Indeed, angle-only
measurements are rarely converted to the Cartesian coordinates with few exceptions, one of which is given in [21]. In addition,
it is difficult to develop coordinate-decoupled filters in pure Cartesian coordinates for mitigating the possible ill conditioning
due to the large difference in the accuracies of range and angle measurements, as well as for high efficiency.

The measurement conversion as described above does not deal with range rate measurements . It is substantially more
complex when the range rate measurements are involved. In this case, the converted measurements are nonlinear (not even

pseudolinear). The use of d 20 = zi + yy + 22z + vg as a measurement of position (x,y, z) and velocity (z,y, ) for
tracking in the Cartesian coordinates was suggested in [22]. Note that this measurement is quadratic in the state, which is not
highly nonlinear. This is clearly superior to converting the range rate measurements 7 = My*‘g + vy directly, which is

Vaity?tz

highly nonlinear. For uncorrelated range and range rate errors, however, the measurement d has an error v 4 = 7 — rf with
zero mean but variance r?o + *o2+020%, which can be quite large for long-range targets.

ror

3.3 Trackingin Sensor Coordinates

Alternatively, target dynamics can be converted from the Cartesian to the sensor coordinates so that the desirable measurement
structure is unaltered, in contrast to converting measurements from sensor to Cartesian coordinates. However, expressing typ-
ical target motions in sensor coordinates (spherical or RUV) leads to highly nonlinear, coordinate-coupled, and sometimes
cumbersome models. For example, a constant-velocity (CV) motion has a simple Cartesian description with two or three
independent two-state one-dimensional CV models. The same motion in the spherical coordinates is rather nonlinear and
complicated, an explicit model of which can be found in, e.g., [3]. Nontrivial, variable accelerations (known as pseudoaccel-
erations) [10, 4, 11] are induced in the sensor coordinates by such a conversion, even for a perfect CV motion, and thus a state
vector including acceleration components is needed. In short, it is impossible to describe typical target motions in the sensor
coordinates in a simple, coordinate-uncoupled way. Further, the converted process noise is non-Gaussian and state dependent
even if it is Gaussian and coordinate-uncorrelated in the original Cartesian coordinates.

Nevertheless, this approach has certain advantages. The foremost one is that the linear, uncoupled, Gaussian structure
of the measurement model is maintained. A large number of tracking filters that operate purely in sensor coordinates have
appeared in the literature. Their common feature is the use of the above linear-Gaussian measurement model. Their key
difference lies in how the target dynamics are modeled. A detailed coverage of these models is beyond the scope of this part,
which is supposed to cover measurement models. For completeness, however, we mention briefly below these techniques and
direct the reader to the specific references.

A simplistic approach is to directly employ some decoupled 1D target dynamics models, such as the CV, CA, and Singer
models (see Part 1), for range (range rate) and other measurements (angles or direction cosines) separately. This approach
accounts for the target dynamics in the sensor coordinates in a crude way; it does not really convert the target dynamics to
the sensor coordinates. As explained above, however, high-order models that include accelerations are needed to “cover” the
actual highly nonlinear dynamics in the sensor coordinates even for a truly CV motion. This leads to accuracy degradation.
The geometry-induced pseudoaccelerations are clearly not accounted for if a two-state “CV” model is used in each of the
sensor coordinates independently. An engineering fix is to compensate the resulting bias [23, 24].

A more effective approach is to use the target dynamics model actually converted in the sensor coordinates. This leads to
a filtering problem with linear uncoupled measurements in Gaussian noise but nonlinear dynamics and non-Gaussian, state-
dependent process noise. Albeit theoretically and computationally challenging, this approach is beneficial in a number of
cases [7, 25, 26, 27, 5]. Decoupled first-order Markov motion models in polar coordinates for maneuvering aircraft tracking
were used in [28, 29, 30]. A similar, decoupled motion model in spherical coordinates was proposed in [31]. Its completely
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coupled version was derived from the Cartesian version in [32]. For the developments in the context of ballistic target
tracking, the reader is referred to Part Il. For example, [5] reported the development of a tracking filter where the reentry
vehicle dynamics are modeled directly in the spherical coordinates. These filters operate entirely in the sensor coordinates.
Sec. 4.2.1 of Part Il contains a more detailed discussion of comparison between reentry-vehicle tracking in Cartesian and in
sensor coordinates.

3.4 Trackingin Other Coordinates

Although target motion and measurements are best described in Cartesian and sensor coordinates, respectively, it is clearly
not necessary to do tracking entirely in one or both of these coordinates. The modified Cartesian coordinates [33, 34] and
the better-known modified polar coordinates [35] for angle-only tracking are good examples. Also, it is fairly common to
propagate the target state in a Cartesian frame and then convert the predicted state, along with the error covariance, to the
sensor coordinates for state update there (see, e.g., [7, 36, 37, 12, 27]). As such, while state update is decoupled across
coordinates, state prediction is in general coupled. This approach relies heavily on coordinate transformation: In addition
to the conversion of the predicted state, the updated state and its error covariance must be converted back to the Cartesian
coordinates. The covariance conversions usually rely on linearization of the error models and is possibly biased, not to
emphasize the state dependency inherent in the approach.

Alternatively, the use of the so-called radar principal Cartesian coordinates was suggested in [8], which is an integration
of the Cartesian and the original sensor coordinates in that the range vector in the original sensor frame is retained as an
axis in this orthogonal Cartesian frame. (The other two axes quantify angular components, one parallel to the radar face, the
other in the plane normal to the radar face and containing the range vector.) In the same spirit, a scheme based on range and
angular models was developed in [10, 11] in the orthogonal range-horizontal-“vertical” (RHV) frame °, which involve range
(and range rate) and, in Cartesian (H and V) coordinates, angular velocity and acceleration. Similar approaches were also
taken in [38, 22, 39, 40, 41, 42]. Thanks to the weak coupling between the range (range rate) and the non-range coordinates,
a merit of this approach is that range and non-range coordinates are processed in a quasi-independent manner, capable of
alleviating ill conditioning and having high efficiency. However, the measurement models in the non-range coordinates are
no longer linear. In essence this approach combines, in a sensible way, the frameworks in purely sensor coordinates described
above by using the range coordinate, and in mixed coordinates as described in Sec. 3.1 for the non-range coordinates. An
additional advantage of using range as a coordinate is that range rate measurements can be incorporated nicely and easily.

4 Linearized Modelsin Mixed Coordinates

Throughout this paper, we consider only a generic filtering cycle from ¢, to #; (i.e., from k£ — 1 to k) and write x for
the predicted state x; ., and x for the updated state %, The associated error covariance matrices are denoted by P and
P, respectively.

The “standard” technique for handling the nonlinear measurement model (10) is the extended Kalman filters (EKF) (see,
e.g., [43, 44, 45])®. In general, it relies on approximating the nonlinear measurement by the first few terms of its Taylor series
expansion. Specifically, the cornerstone of its first-order version, which is most widely used, is linearization of the nonlinear
model, resulting in a derivative-based linearized model. Other linearized models have also been proposed to handle nonlinear
measurements. We describe these linearized models next.

4.1 Derivative-Based

The most widely used technique for linearizing a nonlinear measurement model in the form of (10) is to expand the measure-
ment function h(x) at the predicted state % and ignore all nonlinear terms’:

h(x) ~ h(x) + 2

% (x —x) (18)

X=X

5The H axis is really horizontal, but the V axis is not really vertical. They are both perpendicular to the range vector.
6The first application of the Kalman filter to a real-life problem was in fact in the form of an EKF (see, e.g., [46]).
"More generally, if a completely general nonlinear model z = h (x, v) is considered, we would have

oh oh

h(x,v)mh(:’c,?)«# & a_v

(x— %)+

X=X

(v—v9)

v=v

Such a model does not necessarily have additive noise in the sensor coordinates; for example, it may have additive noise in the Cartesian coordinates.



This amounts to approximating the nonlinear model (10) by the linear model
z=H&X)x+d(x)+v (19)

where H (x) = 22| __ is the Jacobian of h (x) and d (x) = h (x) — H (%) x.
For this model the predicted state and its covariance are updated using the linear Kalman filter equations

K PH' (HPH'+R) ™" (20)
x = %+K(z-72) (1)
P = (I-KH)P (22)

= (I-KH)P(I-KH)+ KRK' (23)

where H = H (x)and z = H (X)X + d (x) + E[v] = h(X) + E[v]. Note that H is used only in the covariance update and
filter gain computation and that (23) is valid for arbitrary gain K and H. These facts are used in some techniques discussed
later. Although appears almost everywhere, covariance update by (22) should be avoided for at least two reasons: It invites
horrible numerical problems and it is theoretically valid only when the gain K is truly optimal, which is rarely the case in
practice. It has been largely overlooked that the gain given by (20) is no longer optimal and thus can be improved since it
ignores the linearization errors.

This linearized model is adequate only when x— x is sufficiently small, which can rarely be guaranteed since the accuracy
of x = %xy;—1 relies on that of target state propagation (i.e., dynamics model) and the previous state estimate Xj_|x—. This
inaccuracy may build up and result in filtering divergence, as reported in numerous examples (see, e.g., [43, 47]). Techniques
aimed at reducing linearization errors are discussed in Sec. 4.4.

4.2 Difference-Based

We present now a new linearized model, proposed in [48], that is not only expectably more accurate but also potentially
simpler than the above widely used derivative-based model.

Fig. 2. Various linearizations.

Consider first a scalar nonlinear measurement z = h(x) + v for simplicity. Let

H(z, ) = w Vo # & (24)

Clearly, H (z*, ) is the slope of the straight line connecting h(x*) and h(Z) (see Fig. 2). For convenience, we denote

. hx)-nx) . . Oh
which is the slope of the tangent of h(z) at Z. If z* is a better estimate than z, it is reasonable to expect that
z=h(Z)+ H(z",Z)(x — ) + v (26)
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is a better linearized model than the derivative-based model z = h(z) + H(Z,Z)(x — Z) + v.
In the vector case, this difference-based linearized model of (10) is

z=h(x)+ HEX"X)(x—%X)+Vv (27)

where
. hi(x},%) — hi(X)
H(x*,x) = [Hi;], Hij = Jx

) hl = Zth row Of h; hl(x* X) = hi(x)|X:[fl,...,ij_1,Z;‘,.Tj_'.l,...,.fn]’

J )

(28)

Clearly it is extremely easy to implement this linearized model. It does not involve computation of any Jacobian, which

could be theoretically and/or computationally challenging for a complicated nonlinear function h. It is expectably more

accurate in general than the derivative-based linearized model, as widely used in the EKF, provided x * is a more accurate
estimate of x than x.

Several ways of determining x* are possible. First, without loss of generality for tracking applications, assume that

h = [h, h})’, where h, is invertible. Let x; = hj'(z). In the case of a 3D measurement of the target position, for

example, x; would be the 3D target position. We can then choose x *= [x}, X5]'= [hl_l(z),)‘c2]’. For the components H;;

corresponding to =7 = Z;, the derivatives H;; = Oh; -, can be used. Alternatively, we can first update the state estimate

Oz |z
from x to x as in an EKF (no need for covariance upde{te here though) and then use x * = x in the above linearized model.
The use of this model will lead to at least an expectably more accurate covariance update for a state update in the form of
x=%x+ K (z—7z) [48]:

*_

]

P=[I - KH(x*,X)|P[I - KH(x*,%)] + KRK' (29)

4.3 Optimally Linearized M odel

The above derivative-based and difference-based linearization models in general have no optimality and can be quite bad in
many cases. We now outline a linearized model that is optimal in the mean-square error (MSE) sense [44], as presented in
[48] for tracking.

A nonlinear function h(x) can be approximated optimally around x by a linear one:

h(x) xa+ H(x — x) (30)
in the sense of having the minimum MSE, denoting x = x — X,
J = E[(h(x) —a— Hx)'(h(x) —a — HX)] (31)
It can be shown that [48]
a = {E[h(x)] - EhLXX]PEX]}/(1 - E[X]'PEX]) (32)
H = {Eh%]- Eh)]ER} P - ERERP)™ (33)
where P = E[%x']. In the case of E[X] = 0, it reduces to
a = E[h(x)], H = Eh(x)x'|P™* (34)

Consider an example of a scalar nonlinear measurement z = =3 + v. Assume that = ~ N(z, P). Then the optimally

linearized model is

z=12°+3Pz+ (32> + 3P)(x — ) + v (35)
since a = E[z®] = z° + 3Pz and H = E[23F]P~! = 3z + 3P. Compared with the derivative-based linearized model
z = 23 + 3z%(x — z) + v, which always underestimates the variation i(x) — h(z), this model appears more appealing for
many situations.

While the derivative-based linearization relies on truncation of the Taylor series, which will incur large errors if x is not
small, this optimally linearized model accounts for large errors within the expectations by the probabilistic weights and thus
tends to give a more conservative filter gain and better performance for cases involving large x. Another possible advantage
of this model is that h need not be differentiable. Basically, it trades integration with differentiation. This may be particularly
useful in such cases where hard limiters (or saturations) are involved.

In the calculation of the required expectations, one may usually assume x ~ N(%, P). It has a small tail probability,
which is appealing because the goal is local linearization. In some situations, one may want to use a distribution flatter than
the Gaussian, but the heavy tails should be truncated; that is, x may be assumed more evenly distributed than Gaussian, but
only over a “small” neighborhood of x. In general, the larger the neighborhood, the more conservative the filter gain.
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4.4 Linearization-Error Reduction Techniques

Sequential Processing. A well-known simple means to reduce linearization errors is sequential processing of the mea-
surement components (see, e.g., [49, 50, 51]). It is well known that the nonlinear measurements should be processed in the
order of their accuracy — more accurate first — (see, e.g., [51, 11]). A particular problem was considered in [52], where
the spherical measurements were processed sequentially in the order of decreasing accuracy: azimuth, elevation, and range.
Performance comparison results between sequential processing and the conventional vector processing were given in [53].

Iterative EKF. Once the updated state x is obtained, the nonlinear measurement model can be re-linearized at x. This
will in general reduce the linearization error compared with linearization at x. The state and its error covariance can then be
re-updated based on the re-linearized model. This process can be repeated, resulting in an algorithm known as an iterated
EKF (IEKF) in the context of Kalman filtering [43]. Following Theorem 8.2 of [43] the iteration algorithm is

¥ = x (36)

! = x4+ KE&)[z-hE&')-HEF)(x-%)], i=0,1,...,L (37)

x = %I (38)

P = [I-KEYHE")P[I - KEHHEY)] + K&)RK (X" (39)

where H(x') = S®| __., K(&') = PH(&")'[H(X")PH(%")' + R]"',i = 0,1, ..., L if a Kalman filtering is used with a

derivative-based linearized model (i.e., in a first-order EKF). A similar iteration can be written if a difference-based model
(Sec. 4.2) is used. In contrast to some other iteration schemes (see, e.g., [54, 47]), the computation of the updated covariance
P by the Joseph’s form (39) is better to be outside of the iteration loop. This was used in [43], and emphasized and discussed
in [55]. A theoretical consideration of the EKF and IEKF measurement updates as Gauss-Newton iteration schemes and a
demonstration of the superiority of the IEKF were presented in [56]. The simulations of [7] (Table I) and [55] show that
such re-linearization iterations can indeed improve accuracy at a level that is scenario dependent [55]. It should be warned,
however, that an improvement is not guaranteed. There are reports that the relinearization iteration degrades the performance.
The reader is referred to [57] for some insight that substantiates this warning.

Higher-Order Polynomial Models.  Another straightforward idea to increase the accuracy of a polynomial approximation
of a nonlinear measurement model is to use quadratic term (and possibly higher-order terms) in the Taylor series expansion.
In the Kalman filtering context, this leads to what is sometimes referred to as a second-order (and higher-order, respectively)
EKF [43, 47, 58]. The simulation results reported in [7] show a considerable improvement in performance of a second-order
EKF over a first-order EKF. However, second-order EKFs are not very often used in practice mainly because of their rather
burdensome computation and limited or marginal performance improvement.

Following the same ideas it is also possible to develop higher-order versions of the difference-based and optimally lin-
earized models.

Many other techniques are available for mitigating the performance degradation due to linearization, such as artificial
inflation of error covariance [58]. [8] includes a short list of such techniques and a brief discussion.

5 Modesin Cartesian Coordinates

Since target motion is best described in Cartesian coordinates but measurements are available in sensor coordinates, as
explained in Sec. 3.2, a commonly used method is to convert measurements from sensor to Cartesian coordinates, and do
tracking entirely in the Cartesian coordinates. As before, we will assume a generic Cartesian frame since measurements
between Cartesian frames can be converted easily and exactly (assuming no sensor registration or gridlock errors).

5.1 Conversion of Measured Positions

The spherical-to-Cartesian transformation ¢ = h=' with h = [h,., hy, he]' is given by

Te rcosbcose
Z.= | Yo | =@ (z) =@ (r,be) = | rsinbcose (40)
Zc rsine



where z = [r, b,e]' and z. = [z.,v.,z2.] are one and the same noisy measurement, expressed in the original spherical
coordinates and the converted Cartesian coordinates, respectively. The RUV-to-Cartesian transformation ¢ = h —! with
h = [hy, hy, by, hy]' s given by

ru

z. = ¢ (z) = ¢ (r, u,v,w)=| rv (41)
rw

If range measurements are not available, as in the case of passive sensors and range-denial countermeasures, the above
range measurement r can be replaced by an estimated range 7 [21, 11] and the range measurement error » — r (and its bias
and variance) should be replaced by the range estimation error # — r (and its bias and variance).

In the sequel, we describe techniques for converting measurements from spherical to Cartesian coordinates. The reader is
referred to [59, 20] for conversion from RUV to Cartesian coordinates.

5.2 Standard Model of Converted M easurements
After conversion, the measurement model in Cartesian coordinates has the form
z. = Hx + v, (42)

where x,, := Hx is the position subvector of the state vector x and v . stands for the resulting measurement error.
By Taylor series expansion of ¢ (z) around the noisy measurement z, we have

x, = ¢ (2) = ¢ (2= v) = ¢ (2) = ] (2) v + HOT (¥) (43)

where z =[r, b, e]' is the error-free true target position in spherical coordinates and HOT (v stands for the higher order (> 2)
terms, and the Jacobian J (z) is evaluated at the noisy measurement z

0 cosbcose —rsinbcose —rcosbsine
J(z) = Dy = | sinbcose rcosbcose —rsinbsine (44)
z .
7=z sine 0 rcose

Then the exactly converted measurement model (42) can be written as

z. = ¢ (2) =xp + V. =%, + J (z2) v—HOT (v) (45)

~~
Ve

Clearly, this expansion is superior to expanding ¢ (z) around the error-free measurement z

2. =9 (z)=p@z+Vv)=%x, + V. =%, +J (z) v+ HOT (v) (46)
Ve
which involves the unknown z.

Evidently, the true converted measurement error v .. is measurement dependent (or state dependent), non-Gaussian, cor-
related across coordinates, and has nonzero mean. Thus, the converted measurement z . has a bias E [v.] and a conditional
bias E [v.|z].

Clearly, conversion of the measured position values per se is straightforward and nothing is really subtle here. The
main task in the so-called measurement conversion, which is better called measurement model conversion, really lies in the
conversion of the associated noise statistics. As explained in Sec. 3.2, the major advantage of expressing measurements in
Cartesian coordinates is the attractive “linear” structure of the corresponding measurement model (42). In order for a linear
filter (e.g., the Kalman filter) to take advantage of this “linear” structure, the first two moments of v . must be determined.

5.3 Linearized Conversion

The “standard” approach is to treat v (approximately) as zero-mean with covariance [50, 22, 10, 45, 11]

R = J(z)RJ (z) (47)
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where superscript L stands for “linearized.” This is usually justified by ignoring HOT(v) in the exact model (45) to yield

z.=p(z)~x,+vi =x,+J(2)v (48)
——

where v = .J (z) v. In other words, the true converted measurement error v .. is approximated by the “linearized” one v *.
In a similar manner (45) can be used to obtain second- and higher-order approximations of the statistics of v . if necessary.

Clearly, the linearized error v* is measurement dependent (or state dependent) and non-Gaussian because .J (z) v is a
nonlinear transformation of the Gaussian vector v due to the dependence of zon v. Ithas zeromean E[v *] = E [E(v*|z)] =
0 and measurement-conditional cov (vZ|z) = RY = J (z) RJ (z)', as given by (47). However, the Kalman filter requires in
theory knowledge of unconditional covariance, given by

cov (v") = E [cov (v"|z)] + cov [E(v"|2)] = E[J (z) R (2)] (49)

which is quite involved. It appears that this fact has been overlooked in the literature. As a result, pretending cov (vL) =
cov(vi|z) = R" is another possible error source for tracking based on this measurement conversion. What is tricky here
is that linear filters also assume that measurement error is not measurement or state dependent. Therefore, errors caused by
pretending cov (v%) = cov(v¥|z) = R* and ignoring the state dependency of v~ may possibly cancel each other to some
extent because the use of the state-dependent covariance cov (v*|z) in place of cov (v*) provides a means of accounting for
the otherwise-ignored state dependency of v . A similar analysis applies to the other conversions described later.

What is just described is the so-called credibility problem of this simple conversion [60]: the actual covariance is sta-
tistically different from the covariance used. More seriously, this linearized conversion ignores the bias in the converted
measurements, which may lead to substantially degraded performance and even filtering divergence.

5.4 Toward Better Conversions

As recognized in [14], the bias of the above linearized conversion can be considerable in some tracking applications and
needs to be compensated. Since then, a number of improved techniques for measurement conversion have been proposed
[14,51, 61, 16, 17, 18, 19, 62]. This topic was treated well in [18, 19] in a comprehensive way.

The probably most natural approach to counter the bias problem is to find the bias b and then remove it from the converted
measurements. This leads to what is known as a debiased conversion. A straightforward way to accomplish this is the additive
debiasing [14, 51, 61, 18, 19]: If z . has bias b, then z, = z. — b would be unbiased. In theory, a filter needs only to know
the exact bias amount and there is no need to de-bias the converted measurement. Nonetheless, a debiased conversion is more
convenient in practice than a conversion with a known bias.

The multiplicative debiasing provides an alternative to the additive debiasing. Consider first a scalar converted measure-
ment z.. of a true state component z. Letz, = Az.. If we choose A = E[z]/E[z.], then z, is clearly an guaranteed unbiased
measurement of z. For the vector case, z, = diag(\1, A2, As)z. would certainly be an unbiased measurement of x provided
we choose (A1, A2, A3) = (E[z]/E[z.], E[y]/Ely.], B[]/ E|z.])-

We now show that as long as the bias can be eventually expressed as a scaled version of noisy measurement z ., additive
debiasing and multiplicative debiasing are completely equivalent. Consider again a scalar converted measurement z . of a true
state component z. Letb = (1 — A\)z. be its bias expressed as a scaled .. Then the converted measurement using additive
debiasing is z, = z. — b = Az, which is seen to be equivalent to multiplicative debiasing with A\ = E[z]/E[z.]. Both
are guaranteed to be unbiased provided the mean and bias are computed exactly. This is clearly true also for the vector case,
where we use z. = diag(A1, A2, A3)z. and b =diag(1 — A1, 1 — A2, 1 — A3)z.

The fundamental idea underlying all measurement conversion techniques developed so far in the literature is the following:
Convert the measurements z in the original sensor coordinates to Cartesian coordinates such that z . = x,, + v., where x,, is
the true position of the target. All of these techniques seek to have an unbiased conversion. Their differences lie in the choice
of z, since there are infinitely many such unbiased conversions. The ultimate judgment on these different conversions is the
performance of the filter using them. It is, however, hard to isolate the impact of these conversions on the filter performance
in a realistic scenario. In view of this, it may suffice to evaluate the size of the covariance of the converted measurement noise
for different unbiased conversions.

Debiased conversion is not the only conversion that can effectively counter the bias problem in measurement conversion.
The equivalent measurement approach proposed in [20] is a more general technique. The reader is referred to [20] for details.

To have a credible covariance for the error of the converted measurements, we also need to compute the covariance as
accurately as possible [60].

11



5.5 Conditioningin Measurement Conversion

Clearly, the key to all debiased conversions is finding mean of the converted measurement error. The question is: conditional
mean or unconditional mean? If conditional, conditioned on what?

Nested Conditioning. The earliest approach, started from [14, 51], is to find the mean and covariance conditioned on the
unknown ideal measurement z first [i.e., E [v.|z] and cov(v.|z)] and then find their averages (expectations) conditioned on
the noisy measurement z. In effect, this approach computes E[E(v .|z)|z] and E[cov(v.|z)|z]. This was referred to as “fixed
truth” in [18, 19], which we think is not precise because nothing is really fixed here.

This approach has a fundamental flaw in that the nested conditional expectations are fundamentally incompatible: The
uncertainty in the noisy measurement z (relative to the ideal measurement z) is removed in the inner expectations, but retained
in the outer expectations. As a result, part but not all of the dependence on z is retained. This flaw is more serious for the
covariance computation. While such a less solid approach is not uncommon in applied research mainly for its potential
tractability, it should be avoided when a more solid approach is readily available.

Measurement Conditioned. More appealing is to compute the mean and covariance of the converted measurement error
conditioned on something known directly. The current noisy measurement is clearly a good choice. Specifically, we find
E[v.|z] and cov(v.|z). The covariance part of this approach was first used in [17], which has a compatibility problem with
the corresponding mean part, though. The mean part was developed in [18, 19] and referred to as a “fixed measurement”
approach there. This name is again not precise because the real situation is that the mean and covariance of the converted
measurement error are functions of the current noisy measurement being converted, which can well be actually a deterministic
or random variable. In other words, the expectation operations never assumes invariance of the current noisy measurement.

Estimate Conditioned. Another possibility is to have the noise mean and covariance conditioned on the best estimate x
known at the time: E[v.|x] and cov(v.|%X), as presented in [18]. It can be justified by

X, =¢(2)=¢p(2+2)=¢(2)+J(2)z+ HOT(2) =%, + J (2) z + HOT (2) (50)

where z is the error of the estimate z of the true position z in spherical coordinates. This approach has the potential of
improved performance compared to the above measurement-conditioned approach when the estimate x is more accurate than
the measurement z. However, the exact impact of using such estimate-dependent mean and covariance of measurement noise
in the Kalman filter is hard to predict. This approach may run into the risk of narcissism — the conversion may be too
optimistic as a result of an optimistic estimate. The estimate-conditioned conversion presented in [18] is based on fairly
simplistic assumptions. No performance results are available. Of course, more sophisticated schemes may be developed.

Estimate and M easurement Conditioned. We can also condition the noise mean and covariance on both measurement
and estimate. This should have good potential at the cost of sophistication. Nothing has yet been done along this line.

Unconditional. In fact, what is required in the Kalman filter is the unconditional mean and covariance of the measurement
noise. As a result, it appears that we should provide such mean and covariance of the converted measurement error. The
problem is that the Kalman filter also assumes that the measurement errors are not state dependent, which is unfortunately
not the case for converted measurements. For this reason, as explained before, use of a conditional mean and covariance of
the error may improve performance since they provide a means to account for the state dependency. That is possibly why
in the literature no unconditional mean and covariance have been computed for the converted measurement and used in the
corresponding Kalman filters.

Prediction Conditioned. More fundamentally, the Kalman filter actually does not need mean and covariance of the mea-
surement noise once the predicted measurement and the measurement residual covariance are known. In view of this, we
need only to calculate the predicted measurement E|z .|z*~!] and the residual covariance cov(z.|z*~!), where z*~ stands
for the sequence of all past measurements, as proposed in [20]. Note that this is different from E[v .|zF~'] and the residual
covariance cov(v.|zF1), as used in [63, 59], because the true state is random and unknown. In our opinion, this is the
most solid approach to measurement conversion, but has been largely overlooked in measurement conversion research. It
circumvents the ambiguity as which conditioning to use for the mean and covariance of the measurement error.
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Covariance versus Mean-Square Matrix. What is needed in the Kalman filter for the measurement noise v .. is its mean
and covariance. As such, in addition to the mean, we should compute covariance cov(v ..), rather than the mean-square matrix
Elv.v'], as was done in [18, 19] (it was called mean-squared error there because v . = z.. — xp). Of course, this difference
vanishes in the case where the debiased converted measurement z .. is truly unbiased since cov(y) = Elyy']— E[y]E[y]’. Use
of a mean-square matrix calculated before debiasing would be a mistake. For credibility evaluation, we may use either the
(theoretical and sample) mean-square matrices, as in [18, 19], or the (theoretical and sample) covariance and bias separately.

5.6 Debiased Conversions

All debiased conversions attempt to build a converted measurement model in Cartesian coordinates in the following form
Z, = Hx + v, (51)

where x, = Hx is the position subvector of the state vector x and v, stands for the measurement error.

In the sequel, we consider only the 3D case. The corresponding 2D formulas are obtained by simply setting e = 0
and o, = 0 in the 3D formulas. Unless stated otherwise explicitly, the measurement errors in the spherical coordinates are
assumed zero-mean, Gaussian distributed, and uncorrelated with covariance diag(c 2, o7, 02).

No matter whether additive or multiplicative debiasing is used, all debiased conversions developed so far (except the
estimate-conditioned one of [18]) turn out to have the following multiplicative form

T Arcosbcose
Z. = | y« | =diag(\, A\, n)z. = | Arsinbcose (52)
Zx prsine

*where the coefficients A and u are determined depending on the conditioning used. This is because the conditional bias b
used in all additive debiasing techniques developed so far turns out to have the form b = diag(1 — A\,1 — A\, 1 — u)z ., and
thus, as shown before, additive debiasing is equivalent to multiplicative debiasing.

The first debiased conversion, proposed in [14] for the 2D case and later extended in [61] to the 3D case, uses additive
debiasing. It is, however, equivalent to the multiplicative debiasing (52) with

A = l—exp (-0} —0?) +exp(—0}/2—02/2) (53)
p = 1—exp(—0?) +exp(—0?/2) (54)

The bias was obtained by the nested conditioning E[E(v.|z)|z]. The corresponding covariance E[cov(v .|z)|z] is more in-
volved and can be found in [14, 51, 61]. The covariance was replaced in [18, 19] by the mean-square matrices E [E (v .V, |z) |z]
and E [v.v|z]. As explained before, covariance should be used, but conditioning on measurement z is better than the nested
conditioning. Due to the undesirable nested conditioning, it should come as no surprise that this conversion is not truly unbi-
ased in the sense of E[z, — x,] = 0, as shown explicitly in [17, 18], and use of the exact cov(v .|z) is preferable to any of
the covariance or mean-square matrices above.

This conversion serves as the basis in [63, 59] for the development of an EKF-type filter in the mixed coordinates, which
compensates the EKF’s bias and processes measurement components sequentially in the original spherical coordinates along
the line of [52]. An improvement in performance over the standard EKF was demonstrated in [63, 59], which for the 2D case
is close to that of the measurement conversion based filter of [14]. No such comparison with debiased conversion based filter
regarding accuracy and computational cost is made for the 3D case in [59].

The first explicit multiplicative debiasing based conversion was proposed in [16, 17] using z . = diag(\1, A2, A\3)z.. The
scaling factors A1, A2, Ag are chosen such that E[z, — x,,] = 0, leading to the following [16, 17], in the form of (52),

1 1 1

A = A‘ p—y A = A p—y e —
P E [cosvy] E [cosv,]’ sTHTE [cosv,]

(55)

under the assumption that the measurement errors in spherical coordinates have a symmetric distribution with independent
components that is independent of the ideal measurement z. For Gaussian and uniform measurement errors, they are given by

A = exp(o}/2402/2), p=exp(c2/2) (for Gaussian errors) (56)
A = sina/a, p=sin(2a)/(2a) (foruniform errors over [—a, a]) (57)
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This conversion is truly unbiased (i.e., E[z . —x,] = 0) regardless whether the true x,, is fixed or random. The corresponding
cov(v,|z) was also derived in [17] without the Gaussian distribution assumption and formulas of E [E (v .v,|z) |z] (less
desirable) can be found in [16, 19]. Note that cov(v .|z) and z. = diag(\, A, u)z. are not completely compatible because
b =diag(l1 — \,1 — A\, 1 — u)z, # E[v.|z], and thus this conversion is not perfectly credible, as verified by simulation in
[18, 19] and by analysis for small values of /o, in [62].

A measurement-conditioned additive debiased conversion was developed in [18], given by (52) with

A =exp(—0}/2 —02/2), u=exp(—0?/2) (58)

It is truly unbiased for every z in that E[z. — x,|z] = 0, as expected. The mean-square matrix E [v v/, |z] (i.e., the cov(v.|z)
since it is unbiased for every z) is also given in [18, 19]. Note that E[z. — xp|z] = 0 (unbiased for every z) implies
Elz. — x,] = 0 (unbiased on average). Therefore, this conversion has a more solid foundation (e.g., no incompatibility
between the first two moments).

Performance comparison results of all these debiased conversions were reported in [18, 19] based on computer simulations
using several scenarios, including fixed-truth and fixed-measurement scenarios. Both debiasing performance and credibility
were examined. In reality, measurement conversions are usually used in the context of dynamic filtering, where both the
state and the measurements are random. The somewhat artificial fixed-truth and fixed-measurement scenarios verify that
the nested conditioning and measurement-conditioned debiased conversions perform relatively better in the two scenarios,
respectively, as expected. Beyond this capability of checking the correctness of the formulas, their value in evaluating the true
performance in the filtering context is limited. For the dynamic scenarios with the Kalman filter, the results are somewhat
dependent on the performance criterion and do not indicate a convincing clear-cut superiority of any single conversion. This
is not surprising because the Kalman filter was actually developed to use unconditional mean and covariance of measurement
noise that is independent of the state and measurements. However, the additive debiased conversion with nested conditioning
of [14, 51, 61] appears to be inferior, as expected, due to its residual bias and noncredibility. All debiased conversions
demonstrate a significant performance improvement over the conventional linearized conversion. For more details, the reader
is referred to [18, 19].

5.7 Quasi-Monte-Carlo Transformations

The above debiasing techniques rely on explicit formulas of the mean and covariance of the converted measurement errors.
Such an analytic method is clearly limited. For more complex situations (e.g., involving range rate measurements, higher
moments, or less tractable distributions), the Monte-Carlo (random sampling) method (see, e.g., [64]) may be used to obtain
the required noise statistics. To our knowledge, however, there is no report of any such application most likely because it is
computationally demanding and probably represents an overkill for measurement conversion.

A recently-developed computationally much more efficient sampling-based method appears to be quite suitable for mea-
surement conversion. This method, referred to as unscented transformation by its inventors [65, 15, 66], belongs to what
is known as quasi-Monte-Carlo methods in statistics and some other disciplines [67], which differs from the Monte-Carlo
method in that the sample points are well-designed and “deterministic.” This approach is particularly suited for the problem
of finding the statistics of a random vector n = ¢(&) that is a (nonlinear) function of a random vector & with known statistics.
It has many potential applications in target tracking, especially as a general nonlinear filtering method [65, 68, 69, 70]. In the
context of the measurement conversion, & and ) are the original and converted measurements, respectively.

Briefly, the main idea of this approach is the following.

e Given the probability distribution p¢(-) of &, select a set of well-designed “deterministic” sample points (referred to as
sigma points) and associated weights S = {€,,w; : ¢ =0, 1,...,1} such that Zi:o w; = 1.

e Transform the samples n;, = ¢(§,),i =0,1,...,1.
e Approximate the true moments of n by their sample moments:

l l
Em~n=>Y wmn;, cov(n) ~Cp=> w;(n,—n)m—n) (59)

i=0 =0

The key issue of this approach is: given pe(-), how to specify a small set of “deterministic” sample points and weights
S={&,w;:i=0,1,...,1} so that the true moments of 7 are well approximated by their sample moments using samples
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©(&;). To this end, expand (&) around the mean £ by Taylor series:
n=¢) =€)+ Dgp + Dip/2+ -+ Dip/n! + - (60)

where the first-order term Dy = g—‘g s—éé (with & = ¢ — £) is the total differential of o(-) perturbed around € by &, and

similarly the nth-order term Dggo/n! is an nth-order polynomial in the components of €. Thus, E [n] can be approximated

by up to the second-order terms with linear and second-order polynomial terms of the components of £ replaced by the
corresponding mean and mean-square value. The error of this approximation arises only from the third and higher order
terms. Therefore, if we guarantee

l

l
ElE] =Y wit,, cov(e) = w (& — B[] (€ - E[)) (61)
=0

=0

thenE[n] ~n = Zi:o w;p(&;) will have a guaranteed accuracy up to the second order. This turns out true for cov(n) = Cy,
as well [65]. This leads to a second-order transformation.

A symmetric second-order transformation [matching E[€] and cov(&)] for an n-dimensional distribution is given by the
following 2n + 1 sigma points [65]:

S:{iozE[i] wo = r/(n+kK)

¢, =E[¢+ [ (n + k) cov (5)] wy; =1/2(n + k) 2

(3

where [ (n + k) cov (5)] _is the ith row (or column) of a square root of the matrix (rn 4 x)cov(&), which may be obtained

by, e.g., the Cholesky decorlnposition, and « is a free parameter that can be designed to minimize higher-order errors. It can
be easily verified by a direct substitution that this S satisfies the constraints in (61) [70].

A measurement conversion using the above symmetric second-order transformation [15] can be implemented with x = 0
8

as

or 0 0
) = 20+£3] 0 |,z =201V3| 0y |,z =20 1V3| 0 (63)

0 0 e
2 = (z(“) , i=+1,42,43  with o of (40) (64)

1 +3 1 +3 ,
7 = = (4) —— () _ 5 () _ gz

Ze 5 i:zi:l z,"”, Cy, 5 izzijl (zC zc) (zc zc) (65)

Note that only six well-designed points are actually used and that z, and C,,_ are actually conditioned on z(®), which can be
random or deterministic. As such,

Elz.|z]) ~ 7., cov(z.|z) = C,, if z(®) = z is the predicted spherical measurement
Elz.|z) ~ Z., cov(z.|z)~ Cy, if z(°) = z is the actual spherical measurement (66)
Elz|z] & 7, COV(z.|z) ~ C,. if z(®) = 7 is the ideal spherical measurement

It is clumsy, although possible, to use this approach to obtain the converted measurement noise statistics directly — for
example, the transformation from the spherical measurement error v to the Cartesian measurement error v .. is complicated.
Also, this will run into the ambiguity in the choice of conditioning, as discussed before. More preferably, E[z .|z* '] ~
Elz.|z] ~ z. and cov (z.|z"* ') ~ cov(z.|z) ~ C,, withz(®) = z can be used as the predicted measurement and the residual
covariance for measurement conversion, as discussed in Sec. 5.5.

More accurate measurement conversions can be obtained in a similar manner by using higher-order transformations (e.qg.,
those match the skew and kurtosis of &, as developed in [15, 66]) or more carefully designed sigma points [15, 66, 71].
Following the original development of the above symmetric second-order sigma points, several enhanced sets of sigma points

81t was recommended in [15] with theoretical justification that x = n — 3 be used for a Gaussian distribution.
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have been proposed in [15, 66, 71, 72, 73]. Briefly, [73] proposes an enhancement by scaling the pattern of sigma points;
to match the mean and covariance of an n-dimensional vector &, [72] proves n + 1 to be the minimum number of required
sigma points and derives a minimal set of asymmetric sigma points that minimizes the skew; a more robust implementation
of the second-order transformation, utilizing more sigma points by augmenting & with its noise, was used in [69] and later
more fully explored in [71], along with an associated square root.

A few general remarks are in order. First, as demonstrated in [15, 69, 66, 71, 72, 73], the accuracy of this transformation is
surprisingly good® in view of the fact that a quite small number of sample points are used. Second, the moments are approx-
imated directly in this approach, while in the linearization (or Taylor series expansion) based techniques, the transformation
is approximated first and then moments are computed accordingly. Third, this approach is not limited to the case where £ is
Gaussian distributed, although the above symmetric second-order sigma points are probably best for a Gaussian distribution.
Finally, a weakness of this approach is that, as for other sampling-based approaches, it does not provide enough insight into
the problem.

6 Pseudomeasurement Models

6.1 Conventional Pseudolinear Models

The pseudomeasurement method, originated in [74], attempts to circumvent the bias problems of the EKF by avoiding explicit
linearization of the nonlinear model (10) in the mixed coordinates. It relies on representing the nonlinear measurement model
(10) in the following pseudolinear form

y (2) = H (2)x + vy (x, V) (67)

where the pseudomeasurement vector y (z) and matrix H (z) are known functions of the actual measurement z, and v ,, (x, v)
is the corresponding pseudomeasurement error, now state dependent. The underlying idea of the approach is clear: Once
a pseudolinear model (67) is available, a linear (Kalman) filter can be readily used with y (z), H (z), and R, (x*) =
cov[v, (x*, v)], where a common choice of x* is the predicted state estimate x.

Developing a stochastic pseudomeasurement model (67) clearly depends on the particular measurement function h (x).
As an example, for the mixed Cartesian-spherical measurement model (10)—(13), the following pseudolinear form can be
obtained by algebraic and trigonometric manipulations:

r cosbcose sinbcose sine T
y(z=|0 | = —ginb cosb 0 Y (68)
0 —cosbsine —sinbsine cose z
H(2)

for the noise-free case, where H (z) is actually the transformation matrix from Cartesian to the line-of-sight (LOS) (more
specifically, RHV) coordinates. As such, we have the following pseudolinear measurement model in the presence of mea-
surement noise

y (z) = [H (z),0]x + vy (x,V) (69)

withx = [z,y, z, ...]'. The exact expression of v, (x,v) is rather involved [39]. Under the usual independence and Gaussian
assumption for the spherical noise v, it can be approximated (in the sense of a small mean-square error) by noise with zero
mean and covariance given approximately by [39]

R, (%) = cov[v, (%,v)] ~ diaglo?, (2% + §%)02, (#* + §° + 2%)0?] (70)

where o, = 0, = o is the standard deviation of angle measurement errors. The predicted state estimate x is used in (70)
since the true state x is not available.

The angular parts (i.e., excluding the first equation) of this pseudolinear measurement model are well known in angle-only
tracking (see, e.g., [75, 76, 77, 11]). Albeit seemingly appealing, its straightforward implementation in the linear Kalman filter
is known to exhibit a considerable bias (see, e.g., [78, 76, 77]). This arises from the strong state (measurement) dependency
of H (z) and the pseudomeasurement noise, which leads to, for example, a strong correlation between the filter gain and the
measurement residual via the current measurement.

Apparently (69) can also be used by means of the standard pseudolinear technique in the Kalman filter, as explained above.
Alternatively, a more subtle approach can be taken. It is based on the fact that the matrix H (z) defined in the model (69)

9Especially for people who are familiar with the accuracy of Monte-Carlo-based methods.
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provides the coordinate transformation from the sensor Cartesian frame to the LOS Cartesian (RHV) frame. This LOS frame is
defined based on the sensor Cartesian frame by the two rotation angles b and e. It has xz-axis pointing to the measured position
of the target, y-axis lying in the horizontal plane, and z-axis determined by the right-hand rule. If the target state vector
is transformed to LOS coordinates as x’ = [H (z) , O]x, then the measurement model (69) is decoupled with the simplest
possible measurement matrix: y = [I, O]x’ + v,. The same equation also holds in the Cartesian coordinates except that
the noise is now H(z)%v,. This process in essence converts both pseudomeasurements and state to the same coordinates.
This decoupled structure was exploited for synthesis of decoupled filters using pseudomeasurements [39, 40, 41, 79]. To
reduce the bias, H(z) is replaced by H(z) with the predicted measurement z to decorrelate the filter gain and the current
measurement residual [39]. The same idea was utilized in [40, 41, 79] (with [40] and [41] being largely duplicated), where
the LOS frame is defined with reference to the prediction z and thus H (z) was used. Note that using prediction-based (rather
than measurement-based) pseudomeasurement matrix does not completely decorrelate filter gain and measurement residual;
it also creates a dependence of the filter gain on the prediction.

Filter decoupling in LOS coordinates is an important and complex issue. Many publications have appeared. Component-
wise formulas for each coordinate were presented in [80, 81, 82, 83, 84]. As pointed out in [85], they can be written much
more elegantly and compactly in matrix notation. For more information concerning decoupling, the reader is referred to
[8, 86, 11] and the references therein.

6.2 ModelsBased on Universal Pseudo-Linearization

To reduce the bias associated with the EKF and the conventional pseudolinear measurement models, a second class of pseu-
dolinear models has been developed, originated in [77]. It was given the impressive name “universal linearization” more
recently in [39, 87]. A more precise name is “universal pseudo-linearization” because it is actually based on a pseudolinear
representation of a nonlinear function, as is clear from below.
In this approach, it is assumed that the nonlinear measurement function h (x) in (10) can be rewritten in the following
pseudolinear form
h(x)=h(x)+G (z,%x) (x — %), forallx,x (71)

where G (z, X) is some matrix function and z = h (x) is the ideal measurement. The corresponding pseudolinear measure-
ment model is
z=G(z,x)x+d(z,X) +v (72)

where d (z,%) = h (%) — G (z,%) X. Consider a simple scalar example with z = h(z) = x3. Since 2® — 23 = (2 + 2 +
) (x —7) = (2/° + 235 + 7)(x — Z), we have G (z,%) = 2>/ + z'/3% 4 z>. Clearly, not all nonlinear functions can
be written in the form of (71); those that can, such as invertible functions, are called “maodifiable” in [77]. This condition was
in fact relaxed in [87] by writing h (x) in the following pseudolinear form

h(x)=h(x)+ H (x,%x) (x —x), forall x,x (73)
which can always be done. As in Sec. 4.2, assume h = [h, hj]’, where h; is invertible, and let x = [x}, x5]'= [hl’l(z), x5]".
Then, G (z,%) = H (h;'(z),%»,%) and (73) becomes h (x) = h(%) + H (h;'(z), %>, %) (x — %). Thus (71) is seen a
special case of (73).

Unlike the conventional pseudolinear models, the above models have a better-defined structure of the measurement noise.
However, the unknown z is simply replaced by the known measurement z in this approach, whereas the error of this replace-
ment is accounted for at least partially in the conventional pseudolinear models.

In order to use this modeling technique, appropriate functions G (z, x) are needed. Such functions for 3D angle-only track-
ing with bearing and elevation measurements were derived in the original paper [77]. The functions are exact for the bearing
but approximate for the elevation. More handy but approximate functions for the bearing were also obtained in [88] and [77].
The original function for the elevation exhibits inadequacy for large elevation angles, which may occur in short-range tracking
or homing missile applications. More precise functions for the elevation were obtained in [89]. Furthermore, functions for
the two general 3D cases — passive (angle-only measurements) and active (range measurement included) tracking — were
derived in [53]. Finally, [87] proposed a general procedure for obtaining such functions approximately. The idea is to approx-
imate h by a polynomial h of an appropriate order (via the Maclaurin series expansion), manipulate each row of the difference
h (x) —h (%) intothe form 3_ p; (x, %) (z} — 27), and viaa? — 27 = (2P~ + 2?22 + ... + 2zl 2+ 207" (2 — )

obtain h (x) — h (%) ~ h (x) — h(%) = H (x,%) (x - X).
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An EKF-type filter was developed in [77, 90] based on (71), where H (x) = % < Is used for filter gain and residual
covariance, but G (z, x) is used for error covariance update:

1

K = PH' (HPH'+R)” (74)
X = x+K(z—12) (75)
P = (I-KG)P(I-KG)+KRK' (76)

It was referred to as a “modified gain” EKF, which is a misnomer because it is the error covariance, not the filter gain, that is
modified. In other words, it differs from the EKF only in that it uses G (z, x) instead of H (x) for the covariance update. The
use of G (z, x) in the gain and residual covariance is avoided so as to remove the direct dependence of the gain on the current
measurement z.

Generally, this modified EKF appears to provide somewhat improved performance over the EKF. It was demonstrated
in [77] to have a reduced bias as compared to that of the conventional pseudomeasurement based and the EKF (to a lesser
degree). It was also shown to be theoretically stable under some conditions [77] and it alleviates the noncredibility [60]
problems of the original EKF so typical for many bearing-only tracking applications [77, 88, 11]. [53] also showed that
the modified EKF proposed therein for active tracking is more credible and provides marginally more accurate position and
velocity estimates than the EKF. [87] considered simple 1D examples. Except for the uncontrollable cases with zero process
noise resulting in divergence of the EKF, the universal pseudo-linearization based EKF presented therein and the EKF have
virtually indistinguishable performance in all other scenarios. Also, the derivative-based linearized model for the sinusoidal
example does not need any polynomial approximation to begin with.

In our opinion, however, all the models of this subsection always can be and should be replaced by the difference-based
linearized model of Sec. 4.2, as explained next.

6.3 Superiority of Difference-Based Linearization M odels

A major task in the universal pseudo-linearization based modeling technique is to find an appropriate universal function
G (z,x) for the problem at hand such that

h(x)=h(x)+G(z,%x) (x — %), forallx,x (77)

It may involve extensive work and approximations. Once such a function is found, however, it is only used to compute the
slope value of the straight line connecting h (x) and h (x) approximately at z = z as (by abusing the vector notation for
brevity)

h(x) —h(x)

X—X

However, the sought-after slope can be found by (28) directly, easily, generally, and exactly without knowing the universal
function G (z, x)! Since only the slope values are used in the filter, our effort on finding the universal function G (z, x) is a
waste.

From the above relationship, it is also clear that G (h (%) ,x) = H (X,%X) = H (x) = % |x:)_( and thus this pseudolinear
model reduces to the derivative-based linearized model of the EKF if the predicted state estimate is used. In general, they are
different. An analysis of their differences made in [53] indicates that the difference may become critical for range estimation
in long-range tracking.

Since replacing x, by h=! (z) can be viewed as a crude measurement conversion, which is known to be biased (see Sec.
5.2), care must be exercised. For example, the bias can be removed by the debiasing techniques discussed in Sec. 5, which is
most likely superior to ad hoc remedies, such as passing the raw measurements through a low pass filter prior to their use in
the above replacement, as mentioned in [87].

~ G (z,%), z ~ h(x) (78)

6.4 Pseudomeasurement Modelsfor Kinematic Constraints

It is possible in practice to have additional information about the target in terms of constraints on its motion that is not ac-
counted for by the target model. Kinematic constraintson the state vector x in a form of ¢(x) = 0 are the most common class.
Use of such constraints can improve state estimation. The pseudomeasurement models provide a convenient framework for
incorporating such constraints. This can be done by augmenting the original measurement model with a pseudomeasurement

10The exact meaning of this ratio of vectors is given by (28).
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model 0 = h. (x) + v.,Where h. (x) = c¢(x) and v, is a zero-mean random error, introduced to relax the rigidity of the
constraint. Accordingly, the measurement vector is augmented by a zero-value pseudomeasurementas z , = [z', 0]'.

This idea was proposed in [91] for tracking targets in a coordinate turn ** and implemented within the framework of the
pseudolinear measurement model (69). The target is expected to have a nearly constant speed motion. This is a fact that is
not explicitly embedded into the target motion model — a modified first-order Markov acceleration process (Singer model)
with adaptive mean jerk (see Part | [1]). Under such a circumstance, the kinematic constraint arising from the constant
speed assumption is that the acceleration vector is nearly orthogonal to the velocity vector: z% + ¢4 + 22 ~ 0. Thus, the
corresponding pseudomeasurement model is

0=H,(x)x+ v, (79)

where x = [z,y, 2, &,9, 3, 4,7, 2] and H,. (x) = [0,0,0,%,4, 2, &4, 2], which is replaced by H. (x) with predicted state
estimate x in the implementation. The noise v is assumed to have zero mean and a variance R, which is a design parameter.
An extended Kalman filter was implemented using this model and model (69) in [91].

It was proposed in [93, 94, 95] to modify the above scheme by replacing H . () with H* (x) = [0, 0,0,0,0,0, %, ¥, z] /5,
where x is the best state estimate before using the kinematic constraint at the time and § is the corresponding target speed.
Specifically, the state update is done in two steps sequentially [49]: the first step is conventional without the kinematic
constraint; its estimate x is used in the second step to provide a pseudomeasurement model more accurate than if the predicted
state estimate x is used. The estimate x is then corrected by re-filtering using the pseudomeasurement alone. The replacement
of H. (x) =[0,0,0, %4, %, ,y,2)by H (x) =[0,0,0,0,0,0,%,y, 2] /s suggested in [95] is based on two considerations:
the acceleration estimates are often less accurate than the velocity estimates and the normalization by the speed s makes v .
less dependent on the velocity*? and thus the design of R.. is easier. By the same token, an additional normalization by (the
estimate of) the acceleration magnitude can simplify the design of R . even further. Such normalization, however, makes
the pseudomeasurement model more nonlinear and may introduce additional errors. An ad hoc design formula for R . was
used in [93, 94, 96, 95]. An performance improvement by the use of the kinematic constraints over the Kalman filter was
demonstrated in [95], along with an analysis of stability and unbiasedness of the resulting filter.

Another kinematic constraint based pseudomeasurement model, arising from bounds on the target speed and/or on the
along-track acceleration, was considered in [97] and some of the references therein.

7 Concluding Remarks

Target motion models are best described by target state in Cartesian coordinates while measurements of the target state
are directly available in the original sensor coordinates (usually in spherical coordinates or in terms of range and direction
cosines). As a result, measurement models in a variety of coordinate systems have been developed.

The most natural and widely used measurement models are in the Cartesian-sensor mixed coordinates, where Cartesian
target state is measured in sensor coordinates. They are highly nonlinear due to the nonlinear relationship between the two
coordinate systems. Effective tracking with these models relies on nonlinear filtering. The most popular approach here is
EKF-based, which relies on derivative-based linearization of the nonlinear models. Many enhancement techniques exist. If
simple models are desirable, it appears that the newly-developed difference-based linearized models have a better potential
than the derivative-based models. More important, these nonlinear models provide a framework particular suitable for most
more sophisticated nonlinear filtering techniques, covered in the subsequent parts of this survey. Consequently, most tracking
applications of advances in nonlinear filtering have appeared and will continue to appear in this framework without hidden
difficulty.

Most measurement models in Cartesian coordinates have an attractive “linear” structure. They rely on a proper conversion
of the measurement models in the original sensor coordinates to the Cartesian coordinate. Linear filters can be applied to
this model (but nonoptimally because its measurement noise is actually state dependent and highly non-Gaussian). The
emphasis here has been on finding the first two moments of the converted measurement noise with appropriate conditioning.
Several different debiasing techniques have been proposed based on a variety of conditional moments of the noise. The
state dependence of the converted measurement noise has been accounted for only through the conditional moments of the
noise. In fact it can be more effectively taken into account in an explicit manner. As pointed out in Sections 5.4 and 5.5, it
appears to be more fundamental and appealing to convert the measurement (residual) and the associated covariance directly,
not the noise moments, and all we need in the Cartesian coordinates is a measurement residual equivalent to the one in the

Usimilar ideas have been used in other areas, such as power system state estimation [92], under the name “virtual measurements.”
12 R of [91] would be proportional to s2, similarly as for the converted range rate measurement d of Sec. 3.2.
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sensor coordinates. This approach circumvents the ambiguity in the conditioning for noise moments. Although incapable
of providing good insight, the quasi-Monte-Carlo method based transformations are attractive for its simplicity and accuracy
within this framework.

The pseudomeasurement approach goes one step further. To take advantage of a linear model, it builds a pseudolinear
model by constructing appropriate pseudomeasurements or finding a universally applicable pseudolinear representation of a
nonlinear function. The price is that the “linear” measurement matrices (and possibly noise) are actually state dependent.
Blind applications of linear filters to such disguised nonlinear problems have proven unsatisfactory. Numerous heuristic
techniques have been proposed for performance improvement. Few of them are, in our opinion, promising in terms of
accuracy and applicability due to their lack of theoretical support. As explained in Sec. 6.3, the universal pseudo-linearization
based models are substantially inferior to and should be replaced by the difference-based linearized models.

The approach to convert/express the target state in the sensor coordinates, where the measurement models are the simplest
possible, leads to highly nonlinear motion models with significant pseudoaccelerations that must be accounted for effectively.
From the nonlinear filtering viewpoint, this appears to be a much more difficult problem than the one with Cartesian state
measured in sensor coordinates: In order to (approximately) summarize past information the state in the sensor coordinates
must have a high dimension and, probably worse, the process noise is highly state dependent, although the measurement
models are linear. To our knowledge, few theoretical results are available for such problems and most techniques developed
here are engineering oriented without a solid theoretical foundation.

Models in other coordinates are more application dependent and should be considered given a particular tracking problem.
They typically utilize a combination of the sensor and Cartesian coordinates, such as line-of-sight Cartesian coordinates
constructed along the range vector in the original sensor coordinates. Here partial measurement and/or state conversions are
usually needed. However, the associated bias and credibility issues have been largely ignored or overlooked and should be
addressed.
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