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Application of Back Propagation Artificial Neural Networks
on Dynam ic Canpensation of M easureanent Systans
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Abstract: Nonlinear dynamic compensation of measurenent systam s isan mportant agect in the field
of instrunent technique The back propagation (BP) neural network isproposed for nonlinear dynam ic
compensation of measureanent systams, as its architecture is determ ined only by the number of nodes in
the input, hidden and output layers W ith the nonlinear mapping behavior, the BP neural nework can
catch up with the dynanic regponse of the systan. A recursive prediction error algorithm which
converges fast is applied to train the BP neural network Experimental results show that the
performance of the BP neural network model conform s to themeasurenent systan to be compensated,
proving themethod is not only effective but of high precision
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W hen the measurand varies with time, the relationship between the input and output of a
measuranent systan also show s dynamic properties Ideal dynamic perfomance of a measuranent
system meets the non-distortion demand, that is'”’

y(t) = kx(t- ®), (1)
where x (t), y (1) isthe input and output of themeasurement system respectively; k is themeasurement
system gain, constant; T is the time-delay, constant

To find a non-distorted measurement systen in a practical circum stance is very difficult For a
considerably good one, its amplitude-frequency perfomance isflat, nanely k keeps stable only w ithin a
Imited frequency scope, othemwise it will decline A s to the phase frequency performance, the linear
scope even narrow er than the bandpass So, the dynamic error is inevitable in practical measureanent

In addition, to avoid the complexity brought out by nonlinear modeling of measuranent system,
the transfer properties of themeasuranent systan are alw ays expected to be linear, steady and non-time
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varying But in practical cases, this ideal systan doesn't exist Therefore, meeting certain precision,
measuranent system is regarded as linear and non-time varying systen and resulting in the dynamic
measurement errors

Neural networks, as general tools for mplenenting nonlinear meapping between inputs and
outputs, can play an mportant role in measurement systans’”. M any researches have presented
successful results on modeling measuraments or sensors® °. Little has been done on correcting
dynanical errors of measuranent systans by neural neworks A rpaia et al have proposed an artificial
neural network-based lution for the compensation of differential active transducers subject to several
error sources, but wo sensors should be used in the correcting structure'®.

To elminate or reduce dynamic errors of a measuranent systan, it is necessary to model the
systan based on its actual properties and compensate it dynamically. A rtificial neural networks are
applied in modeling of measurement system. A n inverse artificial network model is used to dynanically
compensate the measurement errors Experiment results show that the measurement system after
dynam ic compensation meets non-distortion demand and possesses ideal properties

1 Dynamic Canpensation of M easuranent Systan Based on Artificial

Neural Networks
A discrete time nonlinear system can be represented by NARMA X (Nonlinear A utoRegressive
M oving A verage models with eXogeneous inputs)!”. This model describes the nonlinear process,
depending on the fact that the output at a certain time is a nonlinear function of the input, the output
and the lag A measurenent systan model can be represented as the NARM A X model below.
y(t+ =10, ,yt- n+ 1, x@®, ,x(t- m+ 1)), (2)
where: y (1), x (t) istheoutput and the input of the system regectively; n,m isthemaximum lag of the
output and the input; f ( ) isanonlinear function
This type of nonlinearity in Eq (2) is too complex to be represented by a uniform model A's
shown in fig 1, if the input of themeasurement system is x (t), dynamic measurement error will exist
between y (t) and x (t). To compensate for the dynamic errors, it can be deduced from equation (2) as
x() = gly(t+ 1, ,y(- n+ 1), x(t- 1), ,x(t- m+ 1)), (3)
where: g( ) is some kind of nonlinear function w hich is relevant to f ( )
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Fig 1 M esaurement systan model Fig 2 M esaurament systam after dynamic compensatipn
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L ink the system which is represented by equation (3) to the measurement system and realize the
dynamic compensation, as shown in fig 2 It isobvious that the input and output relationship of the
measurament system after compensation is
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y' () = x(t- 1), (4)
where: y'(t) is the output of themeasurenent system after compensation

Comparing Eq (4) with Eq (1), we can conclude that if g ( ) isknown, themeasuranent system
after dynamic compensation meets non-distortion damand and possesses ideal input and output
properties

To compensate dynamic errors of measurement system, it is necessary to use some kind of model
to approach g ( ). Fortunately, the energence of neural networks provides a satisfactory solution to
model for this type of complex systam. It has been proven that any continuous function in a closed
interval can be approached by one hidden layer BP network model T herefore, a three layer BP network
model is competent for mapping an arbitrary function from one multi-dimension gace to another multi-
dimension ace freely.

Fig 3 presents the principles of dynamic compensation of measurenent systen based on artificial
neural networks N ¢ isused to approach the properties of the measurement systen whileN ¢ isused to
compensate the dynamic properties of themeasuranent systan. A s the input of N ¢ is the output of the
measuranent systan, and the output of themeasuranent system is up to its input and can’t be chosen
random ly, the input signal of N ¢ can't be chosen randomly when Ng is being trained In practical
gpplication, N+ isused to trainN ¢ A sNf isamathanatical model, any training signal can be chosen
when Nf isused to trainN ¢ Then agppropriateN ¢ model can be obtained

Fig 4 illustrates the structure of a neural network w ith single hidden layer, which describes the
nonlinear system w ith single input and output!”®. Themodel structure of N ¢ can be represented by the
equation below

N ny Ny "o
= w2xii () = W?[ W hxrk (1) + bﬂ, 5
i y Zl ixii (1) Zl ig Zl Xk (1) ] (5

where: y isoutput of the neural nework; xij;,w{(j= 1,2, ,nu) isoutputsof the hidden layer neurons
and thew eights for connection betw een neurons in hidden layer and output layer respectivelyl; w i, by (j
=1,2, ,mk=12 ,no) isweightsfor connection betw een the output of the kth neurons and the jth
neurons in the hidden layer and threshold valuesof neurons in hidden layer repectively; x:(k= 1,2,
no) is inputsof the neural network N ¢

\
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Output layer n: outputs

Hidden layer »: units

/ L_z‘_l Input layer no inputs
Fig 3 Dynamic compensation of measurement system by neural networks Fig 4 A neural network with one hidden layer
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A sfor neurons in hidden layer, the excitation function is defined as
9(2) = 1/[1+ exp(- 2)] (6)
Smilarly, The expression of N 4 is
an

y (1) = AL

an nNO
ZWszg[z WXk (1) + Bﬂ , (7
-1 -1
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where: w7, wik, b is theweight and threshold of N g, respectively; no, ni is the number of the input
nodes and hidden nodes of N g, regectively.

In order to model the systam using neural networks, it is necessary to train the neural network
model and assign appropriate values to weights and thresholds This paper adopts the recursive
prediction error (RPE) algorithm to train the neural nework!®. Comparedw ith BP algorithm, the RPE
algorithm has such characteristics as smple structure, high convergence gpeed and avoiding being
trapped in the choice of learning rate and inertia factors

First, define the prediction error as

€t,0 = x(t- 1)- y'(,9, (8)
where x (t- 1), y'(t, 6) is delayed input of measuranent systan and output of the neural nework
model regectively; 0 isvector of weights and thresholds

A fter N data have been recorded, a criterion function can be expressed by the follow ing sum of
squared prediction errors

1@ = 7Y €00, (9)

The unknown vector 6 are updated along the GaussN ewv ton search direction of J (6) to make
J -min The basic equation is

B(t) = B(t- 1) + s(hu(6(t- 1)), (10)
where: s(t) is step size; 1 (0 isgaussN ew ton search direction
H@=- [HO] VIO, (11)

w here the gradient of J (6) towards 0 is denoted asJ (0), H (6 is the second order derivative of J (6),
nanely the Hessian matrix of J (6).

It can be easily derived out that

va@=4Fr=- I3 w060, (12)
w0 = | LB (13)
The RPE algorithm for training N ¢ is described by follow ing equations™*!
e(t) = x(t- 1) - y' (1), (14a)
p(t) = ;(Jgfp(t- D- p(t- DEOAOI+ W(Opt- DEO] "W @Opt- DI, (14b)
0(t) = 6(t- 1) + p(t)W(t)e(t), (14c)

where: 0(t) isvector estimation of thew eights and thresholds of N yw hen the tine isat t

p (1) is called the middle matrix, representing the covariance matrix of paraneterswhen t -,
w hose initial value p (0) isusually chosen from the range of 10°I to 10°I, where | is the identity matrix
A(t) is called the forgetting factor It is desirable to set A(t) < 1 at the initial stage 20 that rapid
adaptation takes place and then to let A(t) - 1 as t — . Following equation can meet the above
requiranents

AlY) = 2oA(t- 1)+ (1- ). (15)
The RPE algorithm for training N f are smilar to Eq s(14).

2 Exper ment Reaults

From the analysis above, the process of applying artificial neural networks to dynamic
compensation of ameasuranent systan can be summarized as follow s Based on the properties of
measuranent systen, detemine the number of input nodes and hidden nodes of N+ and Ngs And
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detem ine relevant initial values A cquire relevant experimental data, apply RPE algorithm to train
themodel N +. Choose gppropriate training signal and input it intoN . Apply theoutput of N  as the
input of N & Error signals can be obtained by the comparison of the output of N ¢ and training signal
Apply Eq s (14) in training N ¢ Link Ny to the measuranent systen to realize its dynanic
compensation

For exanple, compensate themeasuranent system below.

Q8
1+ exp[- @5x(t)- Qe6y(t)- Q9T
Determine the structure of the model N+ and N ¢ by setting no= 2, mi= 1 and no= 2, ni= 5,
regectively.
Set &= [0, @&, ,B0]"= [wi,wi, ,w:]', then

y(t+ 1) =

n X ok if@=wg 1<k=<5
W= %: Xok (1- Xg)Wr f@= b, 1<k=<5
Xok (1 - Xgk)WkXgn ifOB= Wi, 1<k<5 1<m=<?2

Pseudo random binary sequences(PRBS) whose anplitude is £ 1 and length is 64 is utilized to
train N + for 800 iterations In order to obtain correct model, PRBSwhose anplitude is+£ Q 1, + Q 2,
, * 1and and length is 64 isutilized to trainN ¢ for 3 200 iterations Table 1 presents thew eights and
thresholdsof N ¢ L ink N ¢ to themeasurenent system to realize dynanic compensation Fig 5 show s the
experiment results, whose input signal is
x (1) = sin(mt/32) + sin(m/16) + e(t).
where: e(t) is irrevelant noisew ith mean value of 0 and standard variance of Q 05
Tah 1 W eights and thresholdsof themodel N g4

1 Ng
wh w2 bt wh W2 bt W W b2 W
-7. 374692 | 1 243797 2 762024 |-17. 709556 | Q 339096 | 13 274070 | -11 992602 | -4 498916 | 9 083950 4 471686
w32 bt W B1 w &2 (354 w? w2 w3 w3 w8
-Q 826207 | -2 607716 | 4 149208 | -Q 243093 | -1 275178 | -2 202395 | -4 253382 | -Q 056839 | 1 941558 4 803375

In fig 5, x (t) isshown by curve 1 Curve 2 represents the outputsw ithout compensation w hile
curve 3 show s the outputs after compensation It is obvious that the measurament systen after
compensation meets the non-distortion demand and possesses very good properties
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Fig 5 Dynanic compensation results Fig 6 Dynamic compensation of mechanical sensor
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Fig 6 gives the compensation results of a mechanical senr which can be regarded as a
measuranent systan. Curve one represents the step reponse The model of the sensor is dravn by
means of systen identification W hen the order of the model is set seven, the result is satisfactory.
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Because of the high order, it's not easy to realize dynamic compensation of the systam. In order to
compensate the sensor, detem ine the structure of themodel N + and N ¢ by setting no= 14, n:= 20 and
no= 14, mi= 20, regpectively. Curve 2 in fig 5 illustrates the compensation result T he steady state time
after compensation becomes less than Sms It show s that the dynam ic performance has been mproved
greatly.

It isa common problan to choose suitable structure of the neural networks A feasibleway is to
select different nodes of input and hidden layers A optimal network can be acquired by comparing the
performances of different neural networks

3 Concusions

This paper discusses gpplication of artificial neural networks in dynamnic compensation of
measuranent systan. From the experimental results, we learn that the performance of measurement
systan after compensation meets the non-distortion demand, proving themethod is effective Based
on the analysis above, themodel N ¢ undertakes the function of reversible mapping of the measuranent
system. Therefore, in order to get reliableN 4, themeasurement system is requested to be reversible
Thispaper doesn’t discuss the reversibility of nonlinear systans Readerswho are interested in it can
10111 The generalization of neural nework model should be considered in the
training of themodel N s In order to secure the dynamic properties of the measurenent system to be

refer to reference

compensated correctly, the training data must be representative In fact, when the model N ¢ is being
trained, only using PRBS (pseudo random binary sequences) w ith single amplitude usually results in
w rong results It is assumed that the structure of measurament systen (such as the order valuesm,
n) isknown If the valuesm, n are unknown, it is necessary to apply different values of m and n in
modeling themeasuranent systen, and choose the values of m and nw ith relatively high precision
Increasing the number of nodes in the hidden layer is al helpful to mprove the precision of dynamic
compensation, butwiill be at the cost of training tine
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