数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 6060|回复: 3

数学专业英语-Sequences and Series

[复制链接]
发表于 2004-5-6 09:32:14 | 显示全部楼层 |阅读模式
< ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
< ><FONT face="Times New Roman" size=3>Series are a natural continuation of our study of functions. In the previous chapter we found how </FONT></P>
< ><FONT face="Times New Roman" size=3>to approximate our elementary functions by polynomials, with a certain error term. Conversely, one can define arbitrary functions by giving a series for them. We shall see how in the sections below.</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>   In practice, very few tests are used to determine convergence of series. Essentially, the comparision test is the most frequent. Furthermore, the most important series are those which converge absolutely. Thus we shall put greater emphasis on these.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>Convergent Series</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>Suppose that we are given a sequcnce of numbers</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">a<SUB>1</SUB>,a<SUB>2</SUB>,a<SUB>3</SUB></FONT>…<FONT face="Times New Roman"> </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">i.e. we are given a number a<SUB>n</SUB>, for each integer </FONT>n><FONT face="Times New Roman">1.We form the sums</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                         S<SUB>n</SUB>=a<SUB>1</SUB>+a<SUB>2</SUB>+</FONT>…<FONT face="Times New Roman">+a<SUB>n<p></p></SUB></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>It would be meaningless to form an infinite sum</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">a<SUB>1</SUB>+a<SUB>2</SUB>+a<SUB>3</SUB>+</FONT>…</FONT></P>
<P ><FONT face="Times New Roman" size=3>because we do not know how to add infinitely many numbers. However, if our sums S<SUB>n</SUB> approach a limit as n becomes large, then we say that the sum of our sequence converges, and we now define its sum to be that limit.</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>   The symbols </FONT></FONT></P>
<P ><FONT size=3>∑<SUB><FONT face="Times New Roman">a=1 </FONT></SUB><SUP>∞<FONT face="Times New Roman"> </FONT></SUP><FONT face="Times New Roman">a<SUB>n</SUB><SUP>                 <p></p></SUP></FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3><SUP> </SUP>will be called a series. We shall say that the series converges if the sums approach a limit as n becomes large. Otherwise, we say that it does not converge, or diverges. If the seriers converges, we say that the value of the series is </FONT></FONT></P>
<P ><FONT size=3>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">=lim<SUB>a</SUB></FONT><SUB>→∞</SUB><FONT face="Times New Roman">S<SUB>n</SUB>=lim<SUB>a</SUB></FONT><SUB>→∞</SUB><FONT face="Times New Roman">(a<SUB>1</SUB>+a<SUB>2</SUB>+</FONT>…<FONT face="Times New Roman">+a<SUB>n</SUB>)</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>In view of the fact that the limit of a sum is the sum of the limits, and other standard properties of limits, we get:</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">THEOREM 1. Let{ a<SUB>n</SUB> }and { b<SUB>n</SUB> }(n=1,2,</FONT>…<FONT face="Times New Roman">)</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>be two sequences and assume that the series </FONT></P>
<P ><FONT size=3>∑<FONT face="Times New Roman"><SUB>a=1</SUB><SUP> </SUP></FONT><SUP>∞<FONT face="Times New Roman"> </FONT></SUP><FONT face="Times New Roman">a<SUB>n</SUB></FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞<FONT face="Times New Roman"> </FONT></SUP><FONT face="Times New Roman">b<SUB>n</SUB><SUP> <p></p></SUP></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">converge. Then </FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">(a<SUB>n </SUB>+ b<SUB>n </SUB>) also converges, and is equal to the sum of the two series. If c is a number, then </FONT></FONT></P>
<P ><FONT size=3>∑<FONT face="Times New Roman"> <SUB>a=1</SUB></FONT><SUP>∞</SUP><FONT face="Times New Roman">c a<SUB>n</SUB> =c</FONT>∑<FONT face="Times New Roman"><SUB>a=1</SUB> </FONT><SUP>∞</SUP><FONT face="Times New Roman">a<SUB>n<p></p></SUB></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">Finally, if s<SUB>n</SUB>=a<SUB>1</SUB>+a<SUB>2</SUB>+</FONT>…<FONT face="Times New Roman">+a<SUB>n</SUB> and t<SUB>n</SUB>=b<SUB>1</SUB>+b<SUB>2</SUB>+</FONT>…<FONT face="Times New Roman">+b<SUB>n</SUB> then</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                           </FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">a<SUB>n </SUB></FONT>∑<SUB><FONT face="Times New Roman"> a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">b<SUB>n</SUB>=lim<SUB>a</SUB></FONT><SUB>→∞<FONT face="Times New Roman"> </FONT></SUB><FONT face="Times New Roman">s<SUB>n </SUB>t<SUB>n </SUB></FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>   In particular, series can be added term by term. Of course , they cannot be multiplied term by term.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>   We also observe that a similar theorem holds for the difference of two series.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">   If a series </FONT>∑<FONT face="Times New Roman">a<SUB>n</SUB> converges, then the numbers a<SUB>n</SUB> must approach 0 as n becomes large. However, there are examples of sequences {an} for which the series does not converge, and yet lim<SUB>a</SUB></FONT><SUB>→∞</SUB><FONT face="Times New Roman">a<SUB>n</SUB>=0</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>Series with Positive Terms</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3> <p></p></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">Throughout this section, we shall assume that our numbers a<SUB>n</SUB> are </FONT>><FONT face="Times New Roman"> 0. Then the partial sums</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                           S<SUB>n</SUB>=a<SUB>1</SUB>+a<SUB>2</SUB>+</FONT>…<FONT face="Times New Roman">+a<SUB>n</SUB></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>are increasing, i.e.</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">s<SUB>1</SUB></FONT><<FONT face="Times New Roman">s<SUB>2 </SUB></FONT><<FONT face="Times New Roman">s<SUB>3</SUB></FONT><…<<FONT face="Times New Roman">s<SUB>n</SUB></FONT><<FONT face="Times New Roman">s<SUB>n+1</SUB></FONT><…</FONT></P>
<P ><FONT face="Times New Roman" size=3>If they are approach a limit at all, they cannot become arbitrarily large. Thus in that case there is a  number B such that </FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>                         S<SUB>n</SUB>&lt; B</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>for all n. The collection of numbers {s<SUB>n</SUB>} has therefore a least upper bound ,i.e. there is a smallest number S such that </FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>                          s<SUB>n</SUB>&lt;S</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">for all n. In that case , the partial sums s<SUB>n</SUB> approach S as a limit. In other words, given any positive number </FONT>ε<FONT face="Times New Roman">&gt;0, we have </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">S –</FONT>ε<FONT face="Times New Roman">&lt; s<SUB>n </SUB>&lt; S</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>for all n .sufficiently large. This simply expresses the fact that S is the least of all upper bounds for our collection of numbers s<SUB>n</SUB>. We express this as a theorem.</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">THEOREM 2. Let{a<SUB>n</SUB>}(n=1,2,</FONT>…<FONT face="Times New Roman">)be a sequence of numbers&gt;0 and let </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                 S<SUB>n</SUB>=a<SUB>1</SUB>+a<SUB>2</SUB>+</FONT>…<FONT face="Times New Roman">+a<SUB>n</SUB></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>If the sequence of numbers {s<SUB>n</SUB>} is bounded, then it approaches a limit S , which is its least upper bound.</FONT></P>
<P ><FONT face="Times New Roman" size=3>Theorem 3 gives us a very useful criterion to determine when a series with positive terms converges:</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">THEOREM 3. Let</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">a<SUB>n</SUB> and</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman"> b<SUB>n</SUB> be two series , with a<SUB>n</SUB>&gt;0 for all n and b<SUB>n</SUB>&gt;0 for all n. Assume that there is a number c such that </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>                 a<SUB>n</SUB>&lt; c b<SUB>n</SUB></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">for all n, and that</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">b<SUB>n</SUB> converges. Then </FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman"> a<SUB>n</SUB> converges, and </FONT></FONT></P>
<P ><FONT size=3>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">a<SUB>n </SUB>≤ c</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">b<SUB>n</SUB></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>PROOF. We have </FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">              a<SUB>1</SUB>+</FONT>…<FONT face="Times New Roman">+a<SUB>n</SUB></FONT>≤<FONT face="Times New Roman">cb<SUB>1</SUB>+</FONT>…<FONT face="Times New Roman">+cb<SUB>n</SUB></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">              =c(b<SUB>1</SUB>+</FONT>…<FONT face="Times New Roman">+b<SUB>n</SUB>)</FONT>≤<FONT face="Times New Roman"> c</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">b<SUB>n</SUB> </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">This means that c</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">b<SUB>n</SUB> is a bound for the partial sums a<SUB>1</SUB>+</FONT>…<FONT face="Times New Roman">+a<SUB>n</SUB>.The least upper bound of these sums is therefore </FONT>≤<FONT face="Times New Roman"> c</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">b<SUB>n</SUB>, thereby proving our theorem.</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>Differentiation and Intergration of Power Series.</FONT></P>
<P ><FONT face="Times New Roman" size=3>If we have a polynomial</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                           a<SUB>0</SUB>+a<SUB>1</SUB>x+</FONT>…<FONT face="Times New Roman">+a<SUB>n</SUB>x<SUP>n</SUP></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">with numbers a<SUB>0</SUB>,a<SUB>1</SUB>,</FONT>…<FONT face="Times New Roman">,a<SUB>n</SUB> as coefficients, then we know how to find its derivative. It is a<SUB>1</SUB>+2a<SUB>2</SUB>x+</FONT>…<FONT face="Times New Roman">+na<SUB>n</SUB>x<SUP>n</SUP></FONT><SUP>–<FONT face="Times New Roman">1</FONT></SUP><FONT face="Times New Roman">. We would like to say that the derivative of a series can be taken in the same way, and that the derivative converges whenever the series does.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">   THEOREM 4. Let r be a number &gt;0 and let </FONT>∑<FONT face="Times New Roman">a<SUB>n</SUB>x<SUP>n</SUP> be a series which converges absolutely for </FONT>∣<FONT face="Times New Roman">x</FONT>∣<FONT face="Times New Roman">&lt;r. Then the series </FONT>∑<FONT face="Times New Roman">na<SUB>n</SUB>x<SUP>n-1</SUP> also converges absolutely for</FONT>∣<FONT face="Times New Roman">x</FONT>∣<FONT face="Times New Roman">&lt;r.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">A similar result holds for integration, but trivially. Indeed, if we have a series </FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">a<SUB>n</SUB>x<SUP>n </SUP>which converges absolutely for </FONT>∣<FONT face="Times New Roman">x</FONT>∣<FONT face="Times New Roman">&lt;r, then the series </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                  </FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">a<SUB>n</SUB>/n+1 x<SUP>n+1</SUP>=x</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">a<SUB>n</SUB>x<SUP>n</SUP><SUB> </SUB></FONT>∕<FONT face="Times New Roman">n+1 </FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>has terms whose absolute value is smaller than in the original series.</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>   The preceding result can be expressed by saying that an absolutely convergent series can be integrated and differentiated term by term and and still yields an absolutely convergent power series.</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>It is natural to expect that if </FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                              f (x)=</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">a<SUB>n</SUB>x<SUP>n</SUP>,</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>then f is differentiable and its derivative is given by differentiating the series term by term. The next theorem proves this.</FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>   THEOREM 5. Let </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                                 f (x)=</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman"> a<SUB>n</SUB>x<SUP>n</SUP></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">be a power series, which converges absolutely for</FONT>∣<FONT face="Times New Roman">x</FONT>∣<FONT face="Times New Roman">&lt;r. Then f is differentiable for </FONT>∣<FONT face="Times New Roman">x</FONT>∣<FONT face="Times New Roman">&lt;r, and </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                                 f</FONT>′<FONT face="Times New Roman">(x)=</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">na<SUB>n</SUB>x<SUP>n-1</SUP>.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">   THEOREM 6. Let f (x)=</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">a<SUB>n</SUB>x<SUP>n</SUP> be a power series, which converges absolutely for </FONT>∣<FONT face="Times New Roman">x</FONT>∣<FONT face="Times New Roman">&lt;r. Then the relation </FONT></FONT></P>
<P ><FONT size=3>∫<FONT face="Times New Roman">f (x)d x=</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">a<SUB>n</SUB>x<SUP>n+1</SUP></FONT>∕<FONT face="Times New Roman">n+1</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">is valid in the interval </FONT>∣<FONT face="Times New Roman">x</FONT>∣<FONT face="Times New Roman">&lt;r.</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>We omit the proofs of theorems 4,5 and 6.</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
 楼主| 发表于 2004-5-6 09:32:28 | 显示全部楼层
< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><B><FONT face="Times New Roman">Vocabulary<p></p></FONT></B></P>< 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman"> <p></p></FONT></P>< 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">sequence   </FONT>序列<FONT face="Times New Roman">                           positive term  </FONT>正项</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">series  </FONT>级数<FONT face="Times New Roman">                               alternate term  </FONT>交错项</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">approximate </FONT>逼近<FONT face="Times New Roman">,</FONT>近似<FONT face="Times New Roman">                      partial sum  </FONT>部分和</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">elementary functions </FONT>初等函数<FONT face="Times New Roman">                criterion  </FONT>判别准则<FONT face="Times New Roman">(</FONT>单数<FONT face="Times New Roman">)</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">section  </FONT>章节<FONT face="Times New Roman">                              criteria   </FONT>判别准则<FONT face="Times New Roman">(</FONT>多数<FONT face="Times New Roman">)</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">convergence  </FONT>收敛<FONT face="Times New Roman">(</FONT>名词<FONT face="Times New Roman">)                    power series </FONT>幂级数</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">convergent   </FONT>收敛<FONT face="Times New Roman">(</FONT>形容词<FONT face="Times New Roman">)                   coefficient </FONT>系数</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">absolute convergence </FONT>绝对收敛<FONT face="Times New Roman">                Cauchy sequence </FONT>哥西序列</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">diverge  </FONT>发散<FONT face="Times New Roman">                               radius of convergence </FONT>收敛半径</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman">term by term  </FONT>逐项<FONT face="Times New Roman">                           M-test  M—</FONT>判别法</P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt"><FONT face="Times New Roman"> <p></p></FONT></P>
 楼主| 发表于 2004-5-6 09:32:42 | 显示全部楼层
< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><B><FONT face="Times New Roman">Notes<p></p></FONT></B></P>< 0cm 0cm 0pt 29.25pt; TEXT-INDENT: -18pt; tab-stops: list 29.25pt; mso-list: l7 level1 lfo22"><FONT face="Times New Roman">1.       series</FONT>一词的单数和复数形式都是同一个字<FONT face="Times New Roman">.</FONT>例如<FONT face="Times New Roman">:</FONT></P>< 0cm 0cm 0pt 11.25pt; TEXT-INDENT: 32.25pt"><FONT face="Times New Roman">One can define arbitrary functions by giving a series for them(</FONT>单数<FONT face="Times New Roman">)</FONT></P><P 0cm 0cm 0pt 11.25pt; TEXT-INDENT: 32.25pt"><FONT face="Times New Roman">The most important series are those which converge absolutely(</FONT>复数<FONT face="Times New Roman">)</FONT></P><P 0cm 0cm 0pt 29.25pt; TEXT-INDENT: -18pt; tab-stops: list 29.25pt; mso-list: l7 level1 lfo22"><FONT face="Times New Roman">2.       In view of the fact that the limit of a sum of the limits, and other standard properties of limits, we get:</FONT></P><P 0cm 0cm 0pt 11.25pt; TEXT-INDENT: 37.5pt"><FONT face="Times New Roman">Theorem 1…</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 16.5pt; mso-char-indent-count: 1.57; mso-char-indent-size: 10.5pt">这是叙述定理的一种方式<FONT face="Times New Roman">: </FONT>即先将事实说明在前面<FONT face="Times New Roman">,</FONT>再引出定理<FONT face="Times New Roman">. </FONT>此句用<FONT face="Times New Roman">in view of the fact that </FONT>说明事实<FONT face="Times New Roman">,</FONT>再用<FONT face="Times New Roman">we get </FONT>引出定理<FONT face="Times New Roman">.</FONT></P><P 0cm 0cm 0pt 29.25pt; TEXT-INDENT: -18pt; tab-stops: list 29.25pt; mso-list: l7 level1 lfo22"><FONT face="Times New Roman">3.       We express this as a theorem.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: -21pt; mso-char-indent-count: -2.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">         </FONT>这是当需要证明的事实已再前面作了说明或加以证明后<FONT face="Times New Roman">,</FONT>欲吧已证明的事实总结成定理时<FONT face="Times New Roman">,</FONT>常用倒的一个句子<FONT face="Times New Roman">,</FONT>类似的句子还有<FONT face="Times New Roman">(</FONT>参看附录Ⅲ<FONT face="Times New Roman">):</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: -21pt; mso-char-indent-count: -2.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">         We summarize this as the following theorem; Thus we come to the following theorem</FONT>等等<FONT face="Times New Roman">.</FONT></P><P 0cm 0cm 0pt 29.25pt; TEXT-INDENT: -18pt; tab-stops: list 29.25pt; mso-list: l7 level1 lfo22"><FONT face="Times New Roman">4.       The least upper bound of these sums is therefore </FONT>≤<FONT face="Times New Roman">c</FONT>∑<SUB><FONT face="Times New Roman">a=1</FONT></SUB><SUP>∞</SUP><FONT face="Times New Roman">b<SUB>n</SUB>, thereby proving our theorem.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: -21pt; mso-char-indent-count: -2.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">        </FONT>最一般的定理证明格式是<FONT face="Times New Roman">”</FONT>给出定理<FONT face="Times New Roman">…</FONT>定理证明<FONT face="Times New Roman">…</FONT>定理证毕<FONT face="Times New Roman">”,</FONT>即<FONT face="Times New Roman">thereby proving our theorem;</FONT>或<FONT face="Times New Roman">we have thus proves the theorem</FONT>或<FONT face="Times New Roman">This completes the proof</FONT>等等作结尾<FONT face="Times New Roman">(</FONT>参看附录Ⅲ<FONT face="Times New Roman">).</FONT></P><P 0cm 0cm 0pt 29.25pt; TEXT-INDENT: -18pt; tab-stops: list 29.25pt; mso-list: l7 level1 lfo22"><FONT face="Times New Roman">5.       </FONT>本课文使用较多插入语<FONT face="Times New Roman">.</FONT>数学上常见的插入语有<FONT face="Times New Roman">:conversely; in practice; essentially; in particular; indeed; in other words; in short; generally speaking </FONT>等等<FONT face="Times New Roman">.</FONT>插入语通常与句中其它成份没有语法上的关系<FONT face="Times New Roman">,</FONT>一般用逗号与句子隔开<FONT face="Times New Roman">,</FONT>用来表示说话者对句子所表达的意思的态度<FONT face="Times New Roman">.</FONT>插入语可以是一个词<FONT face="Times New Roman">,</FONT>一个短语或者一个句子<FONT face="Times New Roman">.</FONT></P><P 0cm 0cm 0pt 11.25pt"><FONT face="Times New Roman"> <p></p></FONT></P>                     
 楼主| 发表于 2004-5-6 09:32:59 | 显示全部楼层
< 0cm 0cm 0pt"><FONT face="Times New Roman">        <B> Exercise<p></p></B></FONT></P>< 0cm 0cm 0pt">Ⅰ<FONT face="Times New Roman">. Translate the following exercises into Chinese:</FONT></P>< 0cm 0cm 0pt 34.5pt; TEXT-INDENT: -18pt; tab-stops: list 34.5pt; mso-list: l22 level1 lfo23"><FONT face="Times New Roman">1.       In exercise 1 through 4,a sequence f (n) is defined by the formula given. In each case, (</FONT>ⅰ<FONT face="Times New Roman">)</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Determine whether the sequence (the formulae are omitted).</FONT></P><P 0cm 0cm 0pt 34.5pt; TEXT-INDENT: -18pt; tab-stops: list 34.5pt; mso-list: l22 level1 lfo23"><FONT face="Times New Roman">2.       Assume f  is a non</FONT>–<FONT face="Times New Roman">negative function defined for all x&gt;1. Use the method</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">suggested by the proof of the integral test to show that </FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">               </FONT>∑<FONT face="Times New Roman"><SUB>k=1</SUB><SUP>n-1</SUP>f(k)</FONT>≤∫<FONT face="Times New Roman"><SUB>1</SUB><SUP>n</SUP>f(x)d x </FONT>≤∑<FONT face="Times New Roman"><SUB>k=2</SUB><SUP>n</SUP>f(k)</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">Take f(x)=log x and deduce the inequalities</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-char-indent-count: 2.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">                c</FONT>&#8226;<FONT face="Times New Roman">n<SUP>n</SUP></FONT>&#8226;<FONT face="Times New Roman">c<SUP>-n</SUP>&lt; n</FONT>!<FONT face="Times New Roman">&lt;c</FONT>&#8226;<FONT face="Times New Roman">n<SUP>n+1</SUP></FONT>&#8226;<FONT face="Times New Roman">c<SUP>-n</SUP></FONT></P><P 0cm 0cm 0pt 21pt; TEXT-INDENT: -21pt; mso-char-indent-count: -2.0; mso-char-indent-size: 10.5pt">Ⅱ<FONT face="Times New Roman">. The proof of theorem 4 is given in English as follows(Read the proof through and try to learn how a theorem is proved, then translate this proof into Chinese ):</FONT></P><P 0cm 0cm 0pt 21pt; TEXT-INDENT: -21pt; mso-char-indent-count: -2.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">        Proof of theorem 4 Since we are interested in the absolute convergence. We may assume that a<SUB>n</SUB>&gt;0 for all n. Let 0&lt;x&lt;r, and let c be a number such that x&lt;c&lt;r. Recall that lim<SUB>a</SUB></FONT><SUB>→∞</SUB><FONT face="Times New Roman">n<SUP>1/n</SUP>=1.</FONT></P><P 0cm 0cm 0pt 21pt; TEXT-INDENT: -21pt; mso-char-indent-count: -2.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">        We may write n a<SUB>n </SUB>x<SUP>n </SUP>=a<SUB>n</SUB>(n<SUP>1/n</SUP>x)<SUP>n</SUP>. Then for all n sufficiently large, we conclude that n<SUP>1/n</SUP>x&lt;c. This is because n1/n comes arbitrarily close to x and x&lt;c. Hence for all n sufficiently large, we have na<SUB>n</SUB>x<SUP>n</SUP>&lt;a<SUB>n</SUB>c<SUP>n</SUP>. We can then compare the series </FONT>∑<FONT face="Times New Roman">na<SUB>n</SUB>x<SUP>n </SUP>with</FONT>∑<FONT face="Times New Roman">a<SUB>n</SUB>c<SUP>n</SUP> to conclude that</FONT>∑<FONT face="Times New Roman">na<SUB>n</SUB>x<SUP>n</SUP> converges. Since</FONT>∑<FONT face="Times New Roman">na<SUB>n</SUB>x<SUP>n-1</SUP>=1/x</FONT>∑<FONT face="Times New Roman">na<SUB>n</SUB>x<SUP>n</SUP>, we have proved theorem 4.</FONT></P><P 0cm 0cm 0pt 21pt; TEXT-INDENT: -21pt; mso-char-indent-count: -2.0; mso-char-indent-size: 10.5pt">Ⅲ<FONT face="Times New Roman">. Recall from what you have learned in Calculus about (</FONT>ⅰ<FONT face="Times New Roman">) Cauchy sequence and (</FONT>ⅱ<FONT face="Times New Roman">) the radius of convergence of a power series.</FONT></P><P 0cm 0cm 0pt 21pt; TEXT-INDENT: -21pt; mso-char-indent-count: -2.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">      Now give the definitions of these two terms respectively.</FONT></P><P 0cm 0cm 0pt 21pt; TEXT-INDENT: -21pt; mso-char-indent-count: -2.0; mso-char-indent-size: 10.5pt">Ⅳ<FONT face="Times New Roman">.  Translate the following sentences into Chinese:</FONT></P><P 0cm 0cm 0pt 45pt; TEXT-INDENT: -18pt; tab-stops: list 45.0pt; mso-list: l15 level1 lfo24"><FONT face="Times New Roman">1.       </FONT>一旦我们能证明<FONT face="Times New Roman">,</FONT>幂级数∑<FONT face="Times New Roman">a<SUB>n</SUB>z<SUP>n</SUP> </FONT>在点<FONT face="Times New Roman">z=z<SUB>1</SUB></FONT>收敛<FONT face="Times New Roman">,</FONT>则容易证明<FONT face="Times New Roman">,</FONT>对每一<FONT face="Times New Roman">z<SUB>1</SUB></FONT>∣<FONT face="Times New Roman">z</FONT>∣<FONT face="Times New Roman">&lt;</FONT>∣<FONT face="Times New Roman">z<SUB>1</SUB></FONT>∣<FONT face="Times New Roman"> ,</FONT>级数绝对收敛<FONT face="Times New Roman">;</FONT></P><P 0cm 0cm 0pt 45pt; TEXT-INDENT: -18pt; tab-stops: list 45.0pt; mso-list: l15 level1 lfo24"><FONT face="Times New Roman">2.       </FONT>因为∑<FONT face="Times New Roman">a<SUB>n</SUB>z<SUP>n</SUP></FONT>在<FONT face="Times New Roman">z=z<SUB>1</SUB></FONT>收敛<FONT face="Times New Roman">,</FONT>于是<FONT face="Times New Roman">,</FONT>由<FONT face="Times New Roman">weierstrass</FONT>的<FONT face="Times New Roman">M—</FONT>判别法可立即得到∑<FONT face="Times New Roman">a<SUB>n</SUB>z<SUP>n</SUP></FONT>在点<FONT face="Times New Roman">z,</FONT>∣<FONT face="Times New Roman">z</FONT>∣<FONT face="Times New Roman">&lt;z<SUB>1</SUB></FONT>的绝对收敛性<FONT face="Times New Roman">;</FONT></P><P 0cm 0cm 0pt 45pt; TEXT-INDENT: -18pt; tab-stops: list 45.0pt; mso-list: l15 level1 lfo24"><FONT face="Times New Roman">3.       </FONT>我们知道有限项和中各项可以重新安排而不影响和的值<FONT face="Times New Roman">,</FONT>但对于无穷级数<FONT face="Times New Roman">,</FONT>上述结论却不总是真的<FONT face="Times New Roman">.</FONT></P>
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-4-25 03:32 , Processed in 0.054571 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表