数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 6370|回复: 3

数学专业英语-Linear Algebra

[复制链接]
发表于 2004-5-6 09:33:33 | 显示全部楼层 |阅读模式
< ><FONT face="Times New Roman"><FONT size=3> For the definition that follows we assume that we are given a particular field K. The scalars to be used are to be elements of K.</FONT></FONT></P>
< ><FONT face="Times New Roman"><FONT size=3>   DEFINITION.    A vector space is a set  V  of elements called vectors satisfying the following axioms.</FONT></FONT></P>
< ><FONT face="Times New Roman"><FONT size=3>   (A)    To every pair,   x  and  y ,of vectors in  V  corresponds a vector x+y,called the sum of  x  and  y, in such a way that.</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>(1)  addition is commutative, x + y = y + x.</FONT></P>
<P ><FONT face="Times New Roman" size=3>(2)  addition is associative, x + ( y + z ) = ( x + y ) + z.</FONT></P>
<P ><FONT face="Times New Roman" size=3>(3)  there exists in  V  a unique vector 0 (called the origin ) such that x + 0 = x for every vector x , and</FONT></P>
<P ><FONT face="Times New Roman" size=3>(4)  to every vector x in  V  there corresponds a unique vector - x such that x + ( - x ) = 0.</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">(B)   To every pair,</FONT>α<FONT face="Times New Roman">and x , where </FONT>α<FONT face="Times New Roman"> is a scalar and x is a vector in  V  ,there corresponds a vector </FONT>α<FONT face="Times New Roman">x in  V  , called the product of </FONT>α<FONT face="Times New Roman"> and x , in such a way that </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">(1)  multiplication by scalars is associative,</FONT>α<FONT face="Times New Roman">(</FONT>β<FONT face="Times New Roman">x ) = (</FONT>αβ<FONT face="Times New Roman">) x</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>(2)  1 x = x for every vector x.</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">(C)  (1) multiplication by scalars is distributive with respect to vector addition,</FONT>α<FONT face="Times New Roman">( x + y ) = </FONT>α<FONT face="Times New Roman">x+</FONT>β<FONT face="Times New Roman">y , and</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">(2)multiplication by vectors is distributive with respect to scalar addition,(</FONT>α<FONT face="Times New Roman">+</FONT>β<FONT face="Times New Roman">) x = </FONT>α<FONT face="Times New Roman">x + </FONT>β<FONT face="Times New Roman">x .</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">The relation between a vector space  V  and the underlying field  K  is usually described by saying that  V  is a vector space over  K . The associated field of scalars is usually either the real numbers  R or the complex numbers  C . If  V is linear space and  M</FONT>真包含于<FONT face="Times New Roman">V , and if </FONT>α<FONT face="Times New Roman"> u -v belong to  M  for every  u  and  v  in  M     and every </FONT>α∈<FONT face="Times New Roman">  K  , then   M  is linear subspace of  V . If U = { u 1,u 2,</FONT>…<FONT face="Times New Roman">} is a collection of points in a linear space  V , then the (linear) span of the set  U  is the set of all points o the form </FONT>∑<FONT face="Times New Roman"> c <SUB>i</SUB> u <SUB>i</SUB> , where c <SUB>i</SUB></FONT>∈<FONT face="Times New Roman">  K ,and all but a finite number of the scalars c<SUB>i</SUB> are 0.The span of U is always a linear subspace of  V.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">    A key concept in linear algebra is independence. A finite set { u <SUB>1</SUB>,u <SUB>2</SUB>,</FONT>…<FONT face="Times New Roman">, u <SUB>k </SUB>} is said to be linearly independent in  V if the only way to write 0 = </FONT>∑<FONT face="Times New Roman"> c <SUB>i</SUB> u <SUB>i </SUB>  is by choosing all the c <SUB>i</SUB> = 0 . An infinite set is linearly independent if every finite set is independent . If a set is not independent, it is linearly dependent, and in this case, some point in the set can be written as a linear combination of other points in the set. A basis for a linear space  M  is an independent set that spans  M .  A space  M  is finite-dimensional if it can be spanned by a finite set; it can then be shown that every spanning set contains a basis, and every basis for  M  has the same number of points in it. This common number is called the dimension of  M  .</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">Another key concept is that of linear transformation. If  V  and  W  are linear spaces with the same scalar field  K , a mapping  L  from  V  into  W  is called linear if  L (u + v ) =  L( u ) + L ( v ) and  L ( </FONT>α<FONT face="Times New Roman">u ) = </FONT>α<FONT face="Times New Roman"> L ( u )  for every  u  and  v  in  V  and </FONT>α<FONT face="Times New Roman"> in  K . With any  I , are associated two special linear spaces:</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>               ker (  L  ) = null space of  L  =  L<SUP>-1  </SUP>(0)</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                    = { all x </FONT>∈<FONT face="Times New Roman"> V  such that  L ( X ) = 0 }</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">      Im ( L ) = image of  L  =  L( V )  = { all L( x ) for x</FONT>∈<FONT face="Times New Roman"> V }.</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>Then  r = dimension of Im ( L ) is called the rank of  L. If  W also has dimension  n, then the following useful criterion results: L is 1-to-1 if and only if L is onto.In particular, if  L is a linear map of  V into itself, and the only solution of  L( x ) = 0 is 0, then L IS onto and is therefore an isomorphism of V onto  V , and has an inverse  L <SUP>-1</SUP> . Such a transformation  V  is also said to be nonsingular.</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">Suppose now that  L  is a linear transformation from  V  into  W  where dim ( V ) = n and  dim  ( W ) =   m . Choose a basis {</FONT>υ<FONT face="Times New Roman"><SUB>1 </SUB>,</FONT>υ<SUB><FONT face="Times New Roman">2 ,</FONT></SUB>…<FONT face="Times New Roman">,</FONT>υ<FONT face="Times New Roman"><SUB>n</SUB>} for  V and a basis {w <SUB>1 </SUB>,w<SUB>2 </SUB>,</FONT>…<FONT face="Times New Roman">,w <SUB>m</SUB>} for  W . Then these define isomorphisms of  V onto  K<SUP>n  </SUP>and  W onto  K<SUP>m</SUP> , respectively, and these in turn induce a linear transformation  A  between these.  Any linear transformation ( such as  A  ) between  K<SUP>n  </SUP>and  K<SUP>m </SUP> is described by means of a matrix ( a<SUB>ij </SUB>), according to the formula  A ( x )  = y , where  x = { x<SUB>1</SUB> , x <SUB>2</SUB>,</FONT>…<FONT face="Times New Roman">, x<SUB>n</SUB> }    y = { y<SUB>1</SUB> , y <SUB>2</SUB>,</FONT>…<FONT face="Times New Roman">, y <SUB>m</SUB>} and    </FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>     </FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">                 Y <SUB>j</SUB>  =</FONT>Σ<FONT face="Times New Roman"><SUP>n</SUP><SUB>j=i</SUB>  a<SUB>ij</SUB> x<SUB>i         </SUB>  I=1,2,</FONT>…<FONT face="Times New Roman">,m.</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>The matrix A is said to represent the transformation  L and to be the representation induced by the particular basis chosen for         V and  W .</FONT></P>
<P ><FONT face="Times New Roman" size=3>If S and T are linear transformations of  V into itself, so is the compositic transformation  ST . If we choose a basis in  V , and use this to obtain matrix representations for these, with  A  representing  S and  B representing  T , then ST must have a matrix representation  C  . This is defined to be the product  AB of the matrixes  A  and  B , and leads to the standard formula for matrix multiplication.</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">The least satisfactory aspect of linear algebra is still the theory of determinants even though this is the most ancient portion of the theory, dating back to Leibniz if not to early China. One standard approach to determinants is to regard an n -by- n matrix as an ordered array of vectors( u <SUB>1 </SUB>, u <SUB>2</SUB> ,</FONT>…<FONT face="Times New Roman">, u <SUB>n</SUB> ) and then its determinant det ( A ) as a function F( u <SUB>1 </SUB>, u <SUB>2 </SUB>,</FONT>…<FONT face="Times New Roman">, u <SUB>n</SUB> ) of these n vectors which obeys certain rules.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">The determinant of such an array  A turns out to be a convenient criterion  for characterizing the nonsingularity of the associated linear transformation, since det ( A ) = F ( u <SUB>1</SUB> , u <SUB>2</SUB> ,</FONT>…<FONT face="Times New Roman">, u <SUB>n</SUB> ) = 0 if and only if the set of vectors  u<SUB>i </SUB> are linearly dependent. There are many other useful and elegant properties  of determinants, most of which will be found in any classic book on linear algebra. Thus, det ( AB ) = det ( A ) det ( B ), and det ( A ) = det ( A') ,where  A' is the transpose of  A , obtained by the formula  A' =( a <SUB>ji </SUB>), thereby rotating the array about the main diagonal. If a square matrix is triangular, meaning that all its entries above the main diagonal are 0,then det ( A ) turns out to be exactly the product of the diagonal entries.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">Another useful concept is that of eigenvalue. A scalar is said to be an eigenvalue for a transformation  T if there is a nonzero vector  </FONT>υ<FONT face="Times New Roman"> with  T (</FONT>υ<FONT face="Times New Roman">)  </FONT>λυ<FONT face="Times New Roman"> . It is then clear that the eigenvalues will be those numbers </FONT>λ∈<FONT face="Times New Roman">  K such that  T -</FONT>λ<FONT face="Times New Roman"> I is a singular transformation. Any vector in the null space of  T -</FONT>λ<FONT face="Times New Roman"> I is called an eigenvector of  T associated with eigenvalue </FONT>λ<FONT face="Times New Roman">, and their span the eigenspace,  E </FONT><SUB>λ<FONT face="Times New Roman">.</FONT></SUB><FONT face="Times New Roman">  It is invariant under the action of  T , meaning that  T carries  E</FONT><SUB>λ</SUB><FONT face="Times New Roman"> into itself. The eigenvalues of  T  are then  exactly the set of roots of the polynomial  p(</FONT>λ<FONT face="Times New Roman">) =det ( T  -</FONT>λ<FONT face="Times New Roman"> I ).If  A is a matrix representing  T ,then one has  p (</FONT>λ<FONT face="Times New Roman">) det ( A -</FONT>λ<FONT face="Times New Roman">I ), which permits one to find the eigenvalues of  T easily if the dimension of  V is not too large, or if the matrix  A is simple enough. The eigenvalues and eigenspaces of   T provide a means by which the nature and structure of the linear transformation  T can be examined in detail.</FONT></FONT></P>        
 楼主| 发表于 2004-5-6 09:33:49 | 显示全部楼层
< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><B><FONT face="Times New Roman">Vocabulary</FONT></B></P>< 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman"> <p></p></FONT></P>< 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">linear algebra     </FONT>线性代数<FONT face="Times New Roman">               non-singular    </FONT>非奇异</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">field    </FONT>域<FONT face="Times New Roman">                               isomorphism     </FONT>同构</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">vector   </FONT>向量<FONT face="Times New Roman">                             isomorphic    </FONT>同构</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">scalar   </FONT>纯量<FONT face="Times New Roman">,</FONT>无向量<FONT face="Times New Roman">                      matrix    </FONT>矩阵<FONT face="Times New Roman">(</FONT>单数<FONT face="Times New Roman">)</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">vector space   </FONT>向量空间<FONT face="Times New Roman">                   matrices    </FONT>矩阵<FONT face="Times New Roman">(</FONT>多数<FONT face="Times New Roman">)</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">span    </FONT>生成<FONT face="Times New Roman">,</FONT>长成<FONT face="Times New Roman">                         determinant      </FONT>行列式</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">independence   </FONT>无关<FONT face="Times New Roman">(</FONT>性<FONT face="Times New Roman">),</FONT>独立<FONT face="Times New Roman">(</FONT>性<FONT face="Times New Roman">)          array    </FONT>阵列</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">dependence    </FONT>有关<FONT face="Times New Roman">(</FONT>性<FONT face="Times New Roman">)                    diagonal    </FONT>对角线</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">linear combination    </FONT>线性组合<FONT face="Times New Roman">            triangular    </FONT>三角形的</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">basis    </FONT>基<FONT face="Times New Roman">(</FONT>单数<FONT face="Times New Roman">)                         entry       </FONT>表值<FONT face="Times New Roman">,</FONT>元素</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">basis    </FONT>基<FONT face="Times New Roman">(</FONT>多数<FONT face="Times New Roman">)                         eigenvalue   </FONT>特征值<FONT face="Times New Roman">,</FONT>本征值</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">dimension  </FONT>维<FONT face="Times New Roman">                             eigenvector    </FONT>特征向量</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">linear transformation   </FONT>线性变换<FONT face="Times New Roman">          invariant     </FONT>不变<FONT face="Times New Roman">,</FONT>不变量</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">null space    </FONT>零空间<FONT face="Times New Roman">                      row    </FONT>行</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">rank    </FONT>秩<FONT face="Times New Roman">                                column  </FONT>列</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">singular    </FONT>奇异<FONT face="Times New Roman">                          system of equations   </FONT>方程组</P><P 0cm 0cm 0pt; TEXT-INDENT: 21pt; mso-layout-grid-align: none"><FONT face="Times New Roman">                                          homogeneous      </FONT>齐次</P>
 楼主| 发表于 2004-5-6 09:34:03 | 显示全部楼层
< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><B><FONT face="Times New Roman">Notes</FONT></B></P>< 0cm 0cm 0pt; tab-stops: 0cm; mso-layout-grid-align: none"><FONT face="Times New Roman">1.    If U = { u <SUB>1</SUB> , u <SUB>2</SUB> ,</FONT>…<FONT face="Times New Roman">}is a collection of points in a linear</FONT></P>< 0cm 0cm 0pt; tab-stops: 0cm; mso-layout-grid-align: none"><FONT face="Times New Roman">space  V , then the (linear) span of the set U is the set of all points of the form </FONT>∑<FONT face="Times New Roman"> c<SUB> i</SUB> u<SUB> i , w</SUB>where c <SUB>i</SUB></FONT>∈<FONT face="Times New Roman"> K ,and all but a finite number of scalars c<SUB> I </SUB> are 0.</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none">意思是<FONT face="Times New Roman">:</FONT>如果<FONT face="Times New Roman">   U  = { u <SUB>1</SUB> , u <SUB>2</SUB> ,</FONT>…<FONT face="Times New Roman">}</FONT>是线性空间<FONT face="Times New Roman">     V    </FONT>的点集<FONT face="Times New Roman">,</FONT>那么集<FONT face="Times New Roman">  U </FONT>的<FONT face="Times New Roman">(</FONT>线性<FONT face="Times New Roman">)</FONT>生成是所有形如<FONT face="Times New Roman"> </FONT>∑<FONT face="Times New Roman"> c <SUB>i</SUB> u <SUB>i</SUB> </FONT>的点集<FONT face="Times New Roman">,</FONT>这里<FONT face="Times New Roman"> c <SUB>i  </SUB></FONT>∈<FONT face="Times New Roman">  K ,</FONT>且除了有限个<FONT face="Times New Roman"> c<SUB>i</SUB>  </FONT>外均为<FONT face="Times New Roman">0.</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm; mso-layout-grid-align: none"><FONT face="Times New Roman">2.    A  finite set { u <SUB>1</SUB> , u <SUB>2</SUB> ,</FONT>…<FONT face="Times New Roman">, u <SUB>k</SUB>}<SUB>  </SUB>is said to be linearly independent if the only way to write 0 = </FONT>∑<FONT face="Times New Roman"> c <SUB>i</SUB> u <SUB>I</SUB> is by choosing all the c <SUB>i</SUB>= 0.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 26.25pt; mso-layout-grid-align: none">这一句可以用更典型的句子表达如下<FONT face="Times New Roman">: A finite set { u <SUB>1</SUB>, u <SUB>2</SUB> ,</FONT>…<FONT face="Times New Roman">, u <SUB>k</SUB> } is said to be linearly independent in  V if </FONT>∑<FONT face="Times New Roman">c <SUB>i</SUB> u <SUB>i</SUB> is by choosing all the c <SUB>i</SUB> = 0.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 26.25pt; mso-layout-grid-align: none">这里<FONT face="Times New Roman">independent </FONT>是形容词<FONT face="Times New Roman">,</FONT>故用<FONT face="Times New Roman">linearly</FONT>修饰它<FONT face="Times New Roman">. </FONT>试比较<FONT face="Times New Roman">F(x) is a continuous periodic function.</FONT>这里<FONT face="Times New Roman">periodic </FONT>是形容词但它前面的词却用<FONT face="Times New Roman">continuous </FONT>而不用<FONT face="Times New Roman">continuously,</FONT>这是因为<FONT face="Times New Roman">continuous </FONT>这个词不是修饰<FONT face="Times New Roman">periodic</FONT>而是修饰作为整体的名词<FONT face="Times New Roman">periodic function.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 26.25pt; mso-layout-grid-align: none"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt; tab-stops: 0cm; mso-layout-grid-align: none"><FONT face="Times New Roman">3.    Then these define isomorphisms of  V onto  K<SUP>n</SUP>  and  W onto  K<SUP>M</SUP> respectively, and these in turn induce a linear transformation  A between these.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt; mso-layout-grid-align: none">这里第一个<FONT face="Times New Roman">these</FONT>代表前句的两个基<FONT face="Times New Roman">(basis);</FONT>第二个<FONT face="Times New Roman">these</FONT>代表<FONT face="Times New Roman">isomorphisms;</FONT>第三个<FONT face="Times New Roman">these</FONT>代表什么留给读者自己分析<FONT face="Times New Roman">.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 21.75pt; mso-layout-grid-align: none"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">4.  The least satisfactory aspect of linear algebra is still the theory of determinants-</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">   </FONT>意思是<FONT face="Times New Roman">:</FONT>线性代数最令人不满意的方面仍是有关行列式的理论<FONT face="Times New Roman">.least satisfactory </FONT>意思是<FONT face="Times New Roman">:</FONT>最令人不满意<FONT face="Times New Roman">.</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: 18.0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">5.   If  a square matrix is triangular, meaning that all its entries above the main diagonal are 0,then det ( A ) turns out to be exactly the product of the diagonal entries.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 32.25pt; mso-layout-grid-align: none">意思是<FONT face="Times New Roman">:</FONT>如果方阵是三角形的<FONT face="Times New Roman">,</FONT>即所有在主对角线上方的元素均为零<FONT face="Times New Roman">,</FONT>那末<FONT face="Times New Roman">det( A ) </FONT>刚好就是对角线元素的乘积<FONT face="Times New Roman">.</FONT>这里<FONT face="Times New Roman">meaning that </FONT>可用<FONT face="Times New Roman">that is to say </FONT>代替<FONT face="Times New Roman">,turns out to be</FONT>解为<FONT face="Times New Roman">”</FONT>结果是<FONT face="Times New Roman">”.</FONT></P>
 楼主| 发表于 2004-5-6 09:34:15 | 显示全部楼层
< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><B><FONT face="Times New Roman">Exercise</FONT></B></P>< 0cm 0cm 0pt 36pt; TEXT-INDENT: -36pt; tab-stops: 36.0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">I.          Answer the following questions:</FONT></P>< 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">  1. How can we define the linear independence of an infinite set?</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">  2. Let  T  be a linear transformation (T:   V </FONT>→<FONT face="Times New Roman"> W  ) whose associated matrix is A.Give a criterion for the non-singularity of the transformation  T.</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">3. Where is the entry a<SUB>45</SUB> of a  m -by-  n  matrix( m&gt;4; n&gt;5) located ?</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">4. Let  A  , B  be two rectangular matrices.Under what condition is the product matrix well-defined ?</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">II.Translate the following two examples and their proofs into Chinese:</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">  1.Example1.   Let   u<SUB>k</SUB>=     t<SUP>k</SUP>  ,k=0,1,2,...  and   t   real. Show that the set    </FONT>{<FONT face="Times New Roman">u <SUB>0</SUB>,u<SUB>1</SUB>,u<SUB>2</SUB>,…</FONT>}<FONT face="Times New Roman"> is independent.</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">Proof:   By the definition of independence of an infinite set, it suffices to show that for each  n  ,the n+1   polynomials   u<SUB>0</SUB>,u<SUB>1</SUB>,...,u<SUB>n</SUB>     are independent.A  relation of the form   </FONT>∑<FONT face="Times New Roman"><SUP>n</SUP><SUB>k=0</SUB> c<SUB>k</SUB>u<SUB>k</SUB>=0 means </FONT>∑<FONT face="Times New Roman"><SUP>n</SUP><SUB>k=0</SUB> c<SUB>k</SUB> t<SUP>k</SUP>=0 for all   t.When   t=0,this gives c<SUB>0</SUB> =0.Differentiating both sides of    </FONT>∑<FONT face="Times New Roman"><SUP>n</SUP><SUB>k=0</SUB> c<SUB>k</SUB> t<SUP>k</SUP> =0 and setting    t=0,we find that  c<SUB>1</SUB>=0.Repeating the process,we find that each cocfficient is zero</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">2.  Example 2.   Let  V  be afinite dimensional linear space, Then every finite basis for  V has the same number of elements.</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">Proof:    Let  S  and  T be two finite bases for V. Suppose  S consists of  k elemnts and T consists of   m  elements.Since  S   is independent and spans  V  ,every set of  k+1  elements in  V  is dependent.Therefore every set of more than k   elements in V  is dependent. Since T  is an independent set , we must have m&lt;k. The same argument with S and T  interchanged shows that   k&lt;m. Hence   k=m.</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">III.Translate the following sentences into English:</FONT></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">     1.</FONT>设<FONT face="Times New Roman">  A   </FONT>是一矩阵。若其行数<FONT face="Times New Roman">  n   </FONT>等于其列数<FONT face="Times New Roman"> m  </FONT>,则称<FONT face="Times New Roman">  A </FONT>是一方阵;若<FONT face="Times New Roman">n  </FONT>≠<FONT face="Times New Roman">m</FONT>,则称<FONT face="Times New Roman">A </FONT>是一矩形阵。<p></p></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">   2.</FONT>设<FONT face="Times New Roman"> T </FONT>是一线性变换,则<FONT face="Times New Roman"> T </FONT>的特征值刚好是多项式<FONT face="Times New Roman">  P</FONT>(λ)<FONT face="Times New Roman">=det</FONT>(<FONT face="Times New Roman">T- </FONT>λ<FONT face="Times New Roman">E </FONT>)的根。<p></p></P><P 0cm 0cm 0pt; mso-layout-grid-align: none"><FONT face="Times New Roman">   3.</FONT>形如Σ<FONT face="Times New Roman"><SUP>n</SUP><SUB>k=1</SUB>c<SUB>ik</SUB> x<SUB>k</SUB> =c<SUB>i</SUB>  i=1</FONT>,<FONT face="Times New Roman">2</FONT>,<FONT face="Times New Roman">...,m  </FONT>的一组方程称为<FONT face="Times New Roman">  m  </FONT>个线性方程,<FONT face="Times New Roman">n  </FONT>个未知数的方程组。若所有<FONT face="Times New Roman">  c<SUB>i</SUB>=0</FONT>,则称上述方程组为一齐次方程组。<p></p></P>
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-4-19 20:00 , Processed in 0.054541 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表