第八届湖南省研究生数学建模竞赛论文

化学发光免疫分析仪运行的调度优化 摘要

在生化检测中,由于检测样品容易受温度、气压、时长等外界因素的影响,因此检测过程需要受到严格管理.合理有效的调度计划可提高检测结果的正确性和可靠性、缩短总检测时间.本文以化学发光免疫分析仪为背景,研究其运行过程中的流水车间调度优化问题.

针对问题一,我们将化学发光免疫分析仪检测调度问题建模为混合流水车间调度问题.与一般的流水车间调度问题不同,由于芯片进入检测后,工序不可中断,属于零等待流水车间问题,此外,检测过程中,转盘对位这一工序重复出现,属于可重入流水车间调度问题,问题具有较高的复杂性.因此,我们将每块芯片的进仓时间、磁珠加样时长、清洗时长考虑进编码,以最大化单位时间检测芯片数量为目标函数,采用遗传算法进行求解.经解算,对于A芯片,单位时间内最多可检测完成47枚,结果见附件A;对于B芯片,受限于温育时长,一个小时不足以完成一片B芯片的检测,结果见附件B.

针对问题二,在问题一个基础上使化学发光免疫分析仪同时检测固定数量的 A、B 芯片,以检测完全部芯片的最少加工时间为最优指标进行优化求解.由于在该问题中设计多类型芯片的排序问题,我们在遗传算法的交叉和变异步骤中进行了相应的操作保证了解的合理性.增加 B 型芯片后,题中给定数量的两类芯片全部加工完成所需时间至少为 **15232** 秒,结果见**附件** C.

文末简述了模型的推广与应用. 将此线性整数规划模型稍作修改就可以运用到工业 生产中的纺织、炼钢等流水车间调度问题.

关键词: 流水车间调度问题 遗传算法 有限时间等待 可重入

目录

化字友光免没分析仪运行的调度优化	l
摘要	I
1 问题综述	1
1.1 问题背景	1
1.2 问题提出	1
2 模型假设与符号说明	1
2.1 模型基本假设	1
2.2 符号说明	2
3 问题分析与模型建立	2
3.1 问题分析	
3.1.1 问题一:	3
3.1.2 问题二:	
3.1.3 问题三:	_
3.2 混合流水车间调度模型指标定义	
3.2.1 最小化最大完工时间	
3.3 模型建立	
3.4 遗传算法	
3.4.1 遗传算法简介	
3.4.2 遗传算法流程	
4 模型应用及分析	
4.1 遗传算法改进策略—交叉变异概率设计	
4.2 优化过程变量范围设计策略	
4.3 结果讨论	-
4.3.1 问题一	
4.3.2 问题二	
5 模型评价与推广	
5.1 模型的优点	
5.2 模型的不足	
5.3 模型的推广	
参考文献	
附录	
附录 A:问题 1. A 型芯片的调度结果 (单位: s)	
附录 B:问题 1. B 型芯片的调度结果 (单位: s)	
附录 C: 问题 2. A、B 型芯片的调度结果 (单位: s)	

1 问题综述

1.1 问题背景

车间调度优化问题广泛存在于生产制造、分析检测等领域.由国务院印发的关于《"十四五"智能制造发展规划》白皮书指出,"智能制造是制造强国建设的主攻方向……要推进智能制造,紧扣智能特征……构建知识驱动、动态优化、安全高效的智能制造系统".生产制造过程的优化是实现智能制造必不可少的关键环节,对于企业而言十分重要.通过优化生产制造过程,可有效提高生产效率、提高设备利用率、降低能耗等,进一步促进国民经济的发展.此外,在生物化学分析检测领域,其实际工作过程通常也可建模为车间调度问题.由于生物样本易被污染、检测条件苛刻等因素,传统的人工检测方法存在检测结果准确度和可靠度不高、检测效率低下等缺点.为克服上述难题,可引入机器设备对检测过程实现全自动化操作.

本题以全自动化学发光免疫分析仪为背景,对芯片检测流程进行数学建模并优化,从而提高检测效率.该分析仪由前处理工作台、温育盘 (转盘)、磁珠加样盒、清洗盘、检测盘等关键部件组成.每片芯片都需要沿检测路径完成包括前处理、第一次温育、磁珠加样、第二次温育、清洗和检测等六道工序.每道工序都有固定的处理工位,且需要一定时间,其中,前处理工序对应 1 个前处理工作台,温育工序对应 40 个卡槽,磁珠加样工序对应 1 个磁珠加样盒,清洗工序对应 8 个清洗盒,转盘对位工序对应 1 个大转盘,检测工序对应 1 个可转动的检测盘.由于化学发光免疫分析仪芯片检测过程满足混合流水车间调度问题(HybridFlowshopSchedulingProblem,HFSP)的特征,因此我们基于 HFSP对芯片检测过程进行建模和优化.

HFSP 问题指的是针对按照同样加工顺序进行加工的流水车间,其中存在至少一道工序中存在两台或多台并行机器.该问题属于非确定性多项式(Non-deterministicPolynomial,NP) 难题,在近十年来得到了广泛的研究,学者提出的解决方法可大体分为可用于解决小规模问题的精确计算方法、启发式算法、智能搜索算法等[1].由于实际中的车间调度任务各有特点,需要针对问题的特征改进编码解码的方法,结合不同算法的优势作出改进.

1.2 问题提出

混合流水车间指的是按照流水式生产线布置,包含多道工序且每道工序有一台或多台并行机器的生产车间,也称为柔性流水车间^[2].这种车间结构可有效消除瓶颈机器对生产连续性的影响,提高整条生产线的效率,同时可有效平衡机器的使用率、增大产能.混合流水车间调度问题(hybridflow-shopschedulingproblem;HFSP) 广泛存在于化工、纺织、钢铁、半导体等行业,因此,研究 HFSP 具有重要的理论意义和实际价值^[3].

2 模型假设与符号说明

2.1 模型基本假设

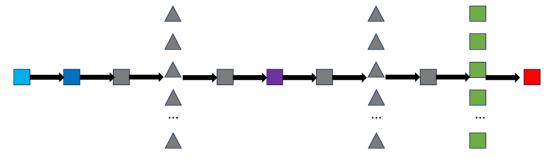
- (1) 机器正常工作, 不出现故障, 中途也不需要进行维护;
- (2) 转盘只能在其之前的工序完成后才能进行对位操作, 不得提前对位;
- (3) 芯片一次经过前处理、第一次温育、磁珠加样、第二次温育、清洗以及检测全部六道工序的处理才算完成检测;

- (4) 假定转盘或检测盘在每次的转动对位过程中,无论如何转动、移动多少距离,所需时长是一样的;
- (5) 磁珠工位、清洗工位、检测工位每次只能处理一枚芯片;
- (6) 无紧急及其他突发情况.

2.2 符号说明

本文定义了如下8个使用次数较多的符号,其余符号在使用时注明.

单位 符号 含义 阶段m上的并行机器的数量 台 L_{m} 阶段总数 个 MJ芯片数量 枚 芯片i在阶段m上的加工时间 秒 $t_{m,j}$ 芯片j在阶段m上的开始时间 秒 $S_{m,j}$ 一个极大的正数 U机器的约束 $\mathcal{X}_{m,j,l}$ 芯片之间的相邻关系


表1 符号说明

3 问题分析与模型建立

3.1 问题分析

题目以化学发光免疫分析仪检测生物芯片为背景,介绍了生物芯片进仓读码、激光超声、过滤、定量、R1R2 加样、第一次温育、磁珠加样、第二次温育、清洗以及检测等工序,可将其建模成化学发光免疫分析仪运行的调度优化问题,即对于一组待检测的芯片,沿上述六道工序的处理,在保证各检测工序不发生冲突的前提下,使得这组芯片的检测总的完成时间尽可能小.

对于化学发光免疫分析仪的检测工序重新分解整合为 7 个工序,因此将其视为 7 类机器进行流水加工.第 1 类机器进行进仓读码操作,仅有 1 台;第 2 类机器进行激光超声、过滤、定量、R1R2 加样操作,仅有 1 台;第 3 类机器负责转盘对位操作,仅有 1 台;第 4 台机器负责温育操作,有 40 台;第 5 台机器负责磁珠加样操作,仅有 1 台;第 6 类机器负责清洗芯片操作,有 8 台;第 7 类机器负责检测盘对位和检测操作,仅有 1 台,实施流程和机器类型如下图所示.

序号	机器	工序	图例	个数
1	前处理工位	前处理步骤1		1
2	前处理工位	前处理步骤2345		1
3	转盘	转盘转动对位		1
4	温育卡槽	第一次温育		40
5	磁珠工位	磁珠加样		1
6	清洗盒	清洗		8
7	检测盘	检测盘对位+检测		1

图 1 化学发光免疫分析仪检测机器类型

基于题中所描述的检测处理流程,我们首先考虑一般情况下的混合流水车间调度问题,由于整个检测中存在特殊工序因此需要进行分类,由于每道工序之间不允许中断,可建模成零等待混合流水车间调度问题;由于六道检测工序之间需要重复使用转盘进行对位,可建模成可重入混合流水车间调度问题;由于清洗工序所需时间至少需要 325 秒,芯片可以长时间停留在清洗工位,使得未清洗的芯片无法开始加工,可建模成带阻塞的混合流水车间调度问题.

在进一步分析中,检测流程中,进仓读码工序控制了芯片最初加工时间,影响后续操作,可将其设置为一个变量.磁珠加样工序所需时间是一个时间范围,即[21s,25s],该工序所需时间可能会对该工序前后的转盘对位有影响,可将其设为一个变量.此外,对于清洗操作所需时间至少需要 325s,对后续检测对未操作产生影响,也可将其设置成一个变量.优化目标函数为最小化最大完工时间,约束为各个工序不发生冲突,并且符合检测流程.这些指标构成了化学发光免疫分析仪检测模型的基础,利用遗传算法对变量进行求解,寻找最优调度方案.

3.1.1 问题一:

对于不同类型的生物芯片,其温育时间也各不相同,检测流程调度结果也不相同,单位时间内检测完的生物芯片个数也不相同.针对不同的生物芯片,求解优化变量,以单位时间内最大完工量作为优化目标,获取最优调度方案.

3.1.2 问题二:

当化学发光免疫分析仪同时检测两种类型的生物芯片时,生物芯片进仓顺序则成为新的优化变量.本问题针对相同数量的 A、B 生物芯片,以检测总时间最短作为优化目标来获取耗时最少的检测方案.

3.1.3 问题三:

问题三同问题二,新增第三种类型的生物芯片 C,温育时间与 A、B 芯片均不相同,同样给定生物芯片 A、B 和 C 芯片个数,求全部检测完成所需最短时间.

3.2 混合流水车间调度模型指标定义

3.2.1 最小化最大完工时间

完工时间是每个芯片最后一道工序完成的时间,其中最大的那个时间就是最大完工时间(makespan).它是衡量调度方案的最根本指标,主要体现机器的生产效率,也是混合流水车间调度问题中应用最为广泛的评价指标之一,可表示为

$$f_1 = \min C_{\max} \tag{1}$$

3.3 模型建立

n个工件在流水线上进行 m个阶段的加工,每一阶段至少有一台机器且至少有一个阶段存在多台机器,并且同一阶段上各机器的处理性能相同,在每一阶段各工件均要完成一道工序,各工件的每道工序可以在相应阶段上的任意一台机器上加工,已知工件各道工序的处理时间,要求确定所有工件的排序以及每一阶段上机器的分配情况,使得调度指标最小.

以 Makespan 为指标的 HFSP 调度可用如下混合整数线性规划模型来描述:

$$\min C_{\max} = \max_{j \in J} (s_{m,j} + t_{m,j})$$
 (2)

$$\sum_{l=1}^{n} x_{m,j,l} = 1, \forall j \in \{1, 2, \dots, J\}; m \in \{1, 2, \dots, M\}$$
(3)

$$y_{m,j,j'} + y_{m,j',j} \le 1, \forall j' \in \{1, 2, \dots, J\}$$
 (4)

$$T = U(3 - y_{m,j,j'} - x_{m,j,l} - x_{m,j',l}), \forall l \in \{1, 2, \dots, L_m\}$$
(5)

$$s_{m,j} - (s_{m,j} + t_{m,j}) + T \ge 0 \tag{6}$$

$$x_{m,j,l} \in \{0,1\} \tag{7}$$

$$y_{m,j,j'} \in \{0,1\} \tag{8}$$

$$s_{t,i} \ge 0 \tag{9}$$

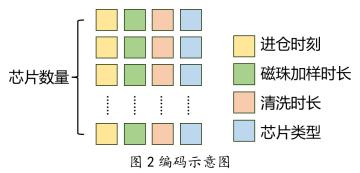
$$s_{m+1,j} - s_{m,j} \ge t_{m,j}, \forall m+1 \in \{1, 2, \dots, M\}$$
 (10)

其中, L_m 为阶段 m上的并行机器的数量;M为阶段总数;J为工件数; $t_{m,j}$ 为工件j在阶段 m上的加工时间; $s_{m,j}$ 为工件j在阶段 m上的开始时间;U为一个极大的正数; $x_{m,j,l}$ 表示机器的约束,如果工件j在阶段 m的机器 l上加工,则 $x_{m,j,l}$ 为 1,否则为 0; $y_{m,j,j}$ 表示工件之间的相邻关系,如果阶段 l上的工件j在工件j之后加工,则 $y_{m,j,j}$ 为 1,否则为 0.

式(2) 是目标函数,表示最后一个工件在最后一个阶段上的结束时间;式(3) 表示各工件必须经过所有阶段,且每阶段只能在 1 台机器上加工;式(4) 表示同一阶段上不同工件的先后约束;式(5) 为应满足的约束条件,即工件 *j* 和工件 *j* "前加工时,需要满足约束条件(5),否则约束条件(式(5)) 无效;式(6) 表示同一机器上加工工件的先后顺序;式(7)、式(8) 定义了决策变量;式(9) 定义了工件在第一阶段的开始时间;式(10) 表示各阶段上工件的完工时间由上一个阶段的完工时间和当前阶段的加工时间决定.

3.4 遗传算法

3.4.1 遗传算法简介


遗传算法(GeneticAlgorithm,GA) 是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法.遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索.其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容[4].

全自动化学发光免疫分析仪检测调度问题具有较大的规模和较高的复杂度,因此考虑采用遗传算法对问题进行求解.

3.4.2 遗传算法流程

(1) 基因编码和解码

由于本文面对的问题为部分零等待流水车间问题,即芯片一旦进入检测机器便不可中断直至检测完毕;同时,题目更突出部分设备间的有限等待约束,即需要优化得到具体的工作时长,因此,与传统的双层编码方式不同,本文直接将每块芯片可变的时刻、时间描述为基因.其中,基因的数据形式为一个二维矩阵,每一行代表一块芯片,每一列分别表示每块芯片的进仓时刻、磁珠加样工序时间、清洗工序时间和芯片类型,具体如图 2 所示.

基于各芯片的进仓时间、各工序时长,可以得到每块芯片在进行任意工序的开始时间和结束时间,从而完成分析仪的调度方案.

(2) 适应度函数计算

适应度用于衡量基因的优劣. 在本文问题中, 以最小化最大完工时间为优化目标, 解算最优调度序列. 通常, 我们认为基因的适应度越高, 其越接近最优解, 因此可通过一定的转换将优化目标转换为适应度, 如

$$\max F(x) = \frac{1}{\min f(x)} \tag{11}$$

其中, F(x) 为适应度函数, f(x) 为目标函数.

目标函数为最后一个芯片的完工时间,即

$$f(x) = t_{n, final} \tag{12}$$

当优化过程中出现的解不满足设备最大数量约束、设备工作时间约束时,可在目标函数上增加罚函数项来进一步引导解的搜索,即

$$f(x) = t_{n \text{ final}} + penalty(x) \tag{13}$$

(3) 交叉

交叉是指以一定概率通过互换两个父代个体的部分染色体产生新个体的运算,是遗传算法的核心算法之一.通过交叉可在基于优良父代基因的基础上进一步扩展有限个体的覆盖面积,避免算法陷入局部最优.

本文定义的交叉规则如下: 首先在父代种群中, 随机选择两个个体进行交叉; 针对选定的两个个体, 随机选择交叉的基因位和随机确定交叉的基因长度; 进一步, 对于编码中的每一列染色体, 有 50%的概率选择进行交叉或不交叉. 具体如图 3 所示.

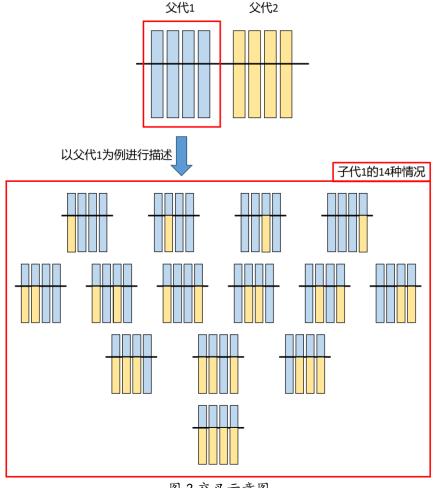


图 3 交叉示意图

(4) 变异

变异是指将某一父代个体基因链的某些基因位上的基因值以某一概率作变动, 形成 新个体的运算. 在发展的过程中, 染色体自身可能发生某种突变, 某个基因的随机改变 可帮助跳出局部搜索范畴, 体现全区搜索的思想.

本文定义的变异规则如下: 首先在父代种群中, 随机选择一个个体进行变异; 针对 选定的个体, 随机选择变异的基因位, 并对基因位的时刻随机增加秒数; 进一步, 对于 编码中的芯片类型,随机与另一位置的不同类型芯片进行交换.具体如图 4 所示.

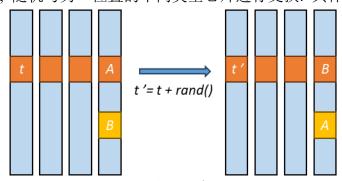


图 4 变异示意图

(5) 种群的选择

种群的选择基于优胜劣汰准则. 建立在群体中个体的适应度评估基础上, 将适应度值高的个体根据轮盘赌概率遗传到下一代, 或者通过交叉算子和变异算子产生新个体后再遗传到下一代.

遗传算法的计算流程如下, 具体如图 5 所示:

- Step 1 设置种群参数,初始化种群
- Step 2 计算种群适应度, 选择子代种群
- Step 3 对子代种群进行交叉操作
- Step 4 对子代种群进行变异操作
- Step 5 将父代种群和子代种群综合后, 根据选择规则产生新一代种群
- Step 6 迭代次数是否超过最大迭代次数, 是, 则结束; 否则, 返回 Step3.

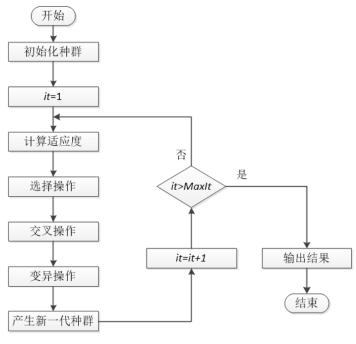


图 5 实施流程

4 模型应用及分析

4.1 遗传算法改进策略—交叉变异概率设计

针对芯片检测流程实际情况,芯片检测调度任务量大,优化复杂,为加快优化速度,基于传统遗传算法设计了染色体交叉变换准则以及变异准则,并设计可自适应调节的染色体交叉和变异概率,在算法迭代过程中,前期交叉及变异概率适当提高,通过随机性来寻找全局最优解;后期交叉及变异概率适当减小,减小随机性,来提高解的稳定性,通过动态调整变异概率,来平衡随机与解的稳定性之间的平衡.

4.2 优化过程变量范围设计策略

基于约束条件设计了算法中个体变异时较合理的变量优化范围,如相邻 2 芯片的进仓时间差变量变化范围为[30,150],芯片在清洗盒中等待时间约束为[325,585].

4.3 结果讨论

4.3.1 问题一

为了便于进一步分析结果,我们将原来的站点抽象为可以并行工作的任务队列,如图 6、图 7 所示:

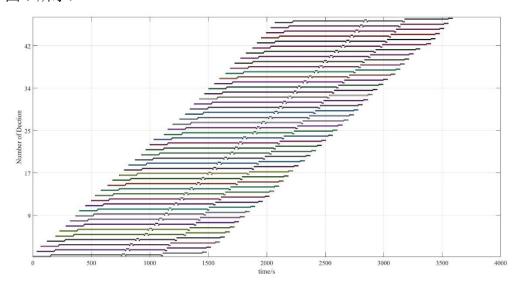


图 6 1 小时内单独检测芯片 A 的甘特图

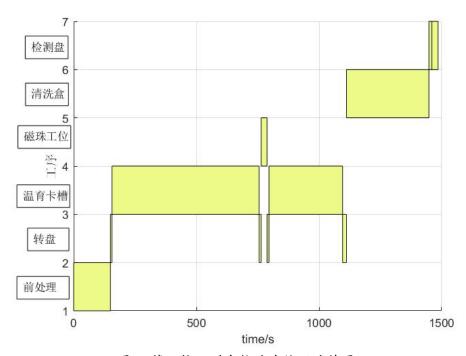


图7第一枚A型生物芯片处理甘特图

图 6 反映了一个小时内能够完成 47 枚 A 型生物芯片,图 7 反映了第一枚 A 型生物芯片依次经过前处理、转盘、温育、磁珠工位、清洗盒和检测盘所有六道操作,各个工序互相之间不冲突,能够顺利进行检测工序.

由于 B 型生物芯片两次温育时间之和为 60 min,因此 1 个小时内无法检测完 1 枚 B 型生物芯片.

4.3.2 问题二

当化学发光免疫分析仪同时检测 A 型和 B 型生物芯片时, A、B 型芯片的进仓顺序以及各个工序开始加工时间如图 X 所示:

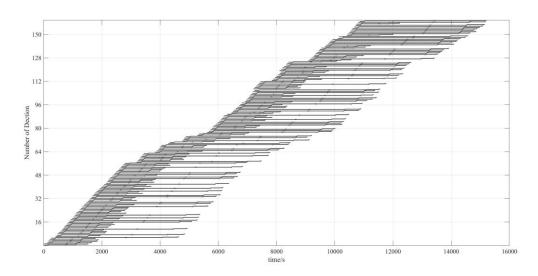


图 8 A、B型生物芯片共同处理甘特图

5 模型评价与推广

5.1 模型的优点

- (1)模型充分结合实际,简化化学发光免疫分析仪检测流程,考虑了诸多重要因素得到合理的模型,如:转盘每次转动对位时长是一样的,这样得到的模型贴合实际,具有较高的应用价值,可以推广到其他优化调度问题;
- (2) 抓住主要矛盾,将复杂的单台设备加工问题转化为简单的多台机器加工的混合流水车间调度问题,合理设置参数,模型的输出结果符合题目要求,能解决实际问题:
- (3) 本文使用的改进遗传算法具有原理简单、适用性强、可扩展性等优点,对于求解调度优化模型非常适用;
- (4) 本文展示结果采用甘特图, 使生产过程更加清晰, 各机器工作时间, 各工件加工进度一目了然.

5.2 模型的不足

- (1)模型虽然综合考虑了很多因素,但为了建立模型,理想化了许多影响因素,例如转盘对位不同工位的耗时相等,具有一定的局限性,得到的最优方案 yu 实际有一定的出入;
- (2) 所建立的模型对工件个数少的流水线调度比较实用,一旦工件种类增加至 10 个及以上可能很难得到全局的最优解.

5.3 模型的推广

此类混合流水线生产调度优化问题在实际中经常碰到,增加或减少适应实际生活生产需要的约束条件后就能应用到其他方面.例如钢铁、纺织等工业生产过程中的一类典型调度问题都可以建立类似的线性规划模型.将此模型稍作修改,具体问题具体分析便可以这一类调度优化问题.故该模型具有一定的实用性与推广性.

参考文献

- [1] 李颖俐, 李新宇, 高亮. 混合流水车间调度问题研究综述[J]. 中国机械工程, 2020, 31(23): 2798-2813+2828.
- [2] SAWIK T. Mixed integer programming for scheduling flexible flow lines with limited intermediate buffers[J/OL]. Mathematical and Computer Modelling, 2000, 31(13): 39-52. DOI:10.1016/S0895-7177(00) 00110-2.
- [3] 袁庆欣, 董绍华. 带有限缓冲区的混合流水车间多目标调度[J/OL]. 工程科学学报, 2021, 43(11): 1491-1498. DOI:10.13374/j.issn2095-9389.2020.02.26.002.
- [4] 裴小兵, 李依臻. 新型混合改进遗传算法求解零等待流水车间调度问题[J/OL]. 计算机集成制造系统, 2021, 27(3): 815-827. DOI:10.13196/j.cims.2021.03.014.

附录 A:问题 1. A 型芯片的调度结果 (单位: s)

芯片序号	进仓时间	第一次 温育起 始时间	磁珠加 样起始 时间	第二次 温育起 始时间	清洗起始时间	检测起 始时间	检测结 束时间
1	0	156	764	796	1112	1460	1485
2	34	190	798	831	1147	1497	1522
3	68	224	832	861	1177	1571	1596
4	121	277	885	914	1230	1615	1640
5	195	351	959	992	1308	1657	1682
6	229	385	993	1026	1342	1697	1722
7	283	439	1047	1080	1396	1735	1760
8	318	474	1082	1115	1431	1784	1809
9	366	522	1130	1163	1479	1827	1852
10	399	555	1163	1192	1508	1875	1900
11	449	605	1213	1245	1561	1940	1965
12	499	655	1263	1294	1610	1997	2022
13	534	690	1298	1331	1647	2035	2060
14	583	739	1347	1376	1692	2080	2105
15	640	796	1404	1435	1751	2117	2142
16	681	837	1445	1474	1790	2159	2184
17	738	894	1502	1534	1850	2198	2223
18	781	937	1545	1575	1891	2245	2270
19	818	974	1582	1615	1931	2300	2325
20	874	1030	1638	1669	1985	2348	2373
21	929	1085	1693	1723	2039	2395	2420
22	966	1122	1730	1760	2076	2444	2469
23	1000	1156	1764	1795	2111	2481	2506
24	1035	1191	1799	1831	2147	2539	2564
25	1123	1279	1887	1918	2234	2578	2603
26	1154	1310	1918	1947	2263	2622	2647
27	1197	1353	1961	1993	2309	2672	2697
28	1256	1412	2020	2050	2366	2718	2743
29	1304	1460	2068	2100	2416	2757	2782

芯片序号	进仓时间	第一次 温育起 始时间	磁珠加 样起始 时间	第二次 温育起 始时间	清洗起 始时间	检测起 始时间	检测结 束时间
30	1344	1500	2108	2140	2456	2794	2819
31	1378	1534	2142	2171	2487	2840	2865
32	1425	1581	2189	2218	2534	2878	2903
33	1468	1624	2232	2261	2577	2920	2945
34	1503	1659	2267	2296	2612	2970	2995
35	1553	1709	2317	2348	2664	3009	3034
36	1597	1753	2361	2391	2707	3073	3098
37	1649	1805	2413	2443	2759	3115	3140
38	1689	1845	2453	2486	2802	3153	3178
39	1726	1882	2490	2520	2836	3191	3216
40	1777	1933	2541	2570	2886	3230	3255
41	1823	1979	2587	2616	2932	3287	3312
42	1879	2035	2643	2672	2988	3379	3404
43	1917	2073	2681	2714	3030	3417	3442
44	1953	2109	2717	2746	3062	3454	3479
45	1995	2151	2759	2791	3107	3491	3516
46	2035	2191	2799	2828	3144	3528	3553
47	2070	2226	2834	2863	3179	3565	3590

附录 B:问题 1. B 型芯片的调度结果 (单位: s)

芯片序号	进仓时间	第一次 温育起 始时间	磁珠加 样起始 时间	第二次 温育起 始时间	清洗起 始时间	检测起 始时间	检测结 束时间
1	0	156	2564	2585	3809	4146	4171

附录 C: 问题 2. A、B 型芯片的调度结果 (单位: s)

芯片序 号	芯片类 型	进仓时间	第一次 温育起 始时间	磁珠加 样起始 时间	第二次 温育起 始时间	清洗起 始时间	检测起 始时间	检测结 束时间
1	А	0	156	764	795	1111	1506	1531
2	А	38	194	802	833	1149	1637	1662
3	А	139	295	903	935	1251	1823	1848
4	А	174	330	938	968	1284	1860	1885
5	А	215	371	979	1008	1324	1758	1783
6	В	261	417	2825	2855	4071	4618	4643
7	А	416	572	1180	1212	1528	1923	1948
8	В	455	611	3019	3051	4267	4828	4853
9	А	489	645	1253	1286	1602	2098	2123
10	А	535	691	1299	1330	1646	2141	2166
11	А	589	745	1353	1382	1698	2038	2063
12	В	649	805	3213	3243	4459	4909	4934
13	А	684	840	1448	1481	1797	2193	2218
14	А	717	873	1481	1511	1827	2285	2310
15	А	761	917	1525	1555	1871	2409	2434
16	А	808	964	1572	1603	1919	2355	2380
17	В	854	1010	3418	3448	4664	5067	5092
18	В	892	1048	3456	3486	4702	5254	5279
19	А	933	1089	1697	1729	2045	2580	2605
20	В	990	1146	3554	3583	4799	5306	5331
21	А	1034	1190	1798	1827	2143	2701	2726
22	В	1075	1231	3639	3668	4884	5348	5373
23	А	1105	1261	1869	1901	2217	2814	2839
24	А	1137	1293	1901	1933	2249	2632	2657
25	А	1197	1353	1961	1990	2306	2777	2802
26	А	1239	1395	2003	2034	2350	2854	2879
27	А	1289	1445	2053	2083	2399	2894	2919
28	В	1322	1478	3886	3916	5132	5627	5652
29	А	1379	1535	2143	2176	2492	3084	3109

芯片序 号	芯片类 型	进仓时间	第一次 温育起 始时间	磁珠加 样起始 时间	第二次 温育起 始时间	清洗起 始时间	检测起 始时间	检测结 束时间
30	В	1412	1568	3976	4006	5222	5712	5737
31	В	1468	1624	4032	4062	5278	5803	5828
32	А	1522	1678	2286	2316	2632	3168	3193
33	А	1565	1721	2329	2362	2678	3016	3041
34	А	1613	1769	2377	2407	2723	3123	3148
35	В	1654	1810	4218	4250	5466	5911	5936
36	В	1687	1843	4251	4281	5497	6050	6075
37	А	1734	1890	2498	2530	2846	3377	3402
38	А	1773	1929	2537	2569	2885	3246	3271
39	В	1826	1982	4390	4420	5636	6102	6127
40	Α	1874	2030	2638	2669	2985	3429	3454
41	В	1926	2082	4490	4521	5737	6144	6169
42	А	1980	2136	2744	2776	3092	3669	3694
43	А	2032	2188	2796	2825	3141	3508	3533
44	В	2087	2243	4651	4681	5897	6339	6364
45	А	2144	2300	2908	2941	3257	3773	3798
46	А	2192	2348	2956	2987	3303	3716	3741
47	А	2224	2380	2988	3018	3334	3826	3851
48	В	2254	2410	4818	4847	6063	6513	6538
49	В	2307	2463	4871	4901	6117	6637	6662
50	А	2363	2519	3127	3157	3473	3874	3899
51	В	2418	2574	4982	5014	6230	6599	6624
52	В	2449	2605	5013	5045	6261	6736	6761
53	А	2499	2655	3263	3294	3610	3989	4014
54	А	2558	2714	3322	3352	3668	4047	4072
55	А	2603	2759	3367	3400	3716	4148	4173
56	В	2655	2811	5219	5248	6464	6814	6839
57	А	2687	2843	3451	3481	3797	4324	4349
58	А	2742	2898	3506	3535	3851	4265	4290
59	В	2791	2947	5355	5386	6602	6944	6969

芯片序 号	芯片类 型	进仓时间	第一次 温育起 始时间	磁珠加 样起始 时间	第二次 温育起 始时间	清洗起 始时间	检测起 始时间	检测结 束时间
60	В	3198	3354	5762	5795	7011	7461	7486
61	А	3247	3403	4011	4040	4356	4789	4814
62	А	3284	3440	4048	4080	4396	4748	4773
63	А	3324	3480	4088	4119	4435	4868	4893
64	В	3360	3516	5924	5956	7172	7702	7727
65	А	3403	3559	4167	4197	4513	4978	5003
66	В	3445	3601	6009	6040	7256	7753	7778
67	А	3833	3989	4597	4626	4942	5435	5460
68	В	3891	4047	6455	6484	7700	8065	8090
69	В	3947	4103	6511	6542	7758	8240	8265
70	А	3988	4144	4752	4784	5100	5491	5516
71	Α	4022	4178	4786	4816	5132	5571	5596
72	В	4056	4212	6620	6653	7869	8403	8428
73	В	4285	4441	6849	6882	8098	8450	8475
74	А	4340	4496	5104	5134	5450	5843	5868
75	В	4774	4930	7338	7369	8585	9106	9131
76	А	4810	4966	5574	5606	5922	6383	6408
77	В	4840	4996	7404	7434	8650	9026	9051
78	В	4890	5046	7454	7483	8699	9188	9213
79	А	5293	5449	6057	6089	6405	6892	6917
80	А	5340	5496	6104	6135	6451	7025	7050
81	В	5623	5779	8187	8220	9436	9863	9888
82	В	5683	5839	8247	8279	9495	9921	9946
83	В	5741	5897	8305	8336	9552	9992	10017
84	А	5785	5941	6549	6578	6894	7292	7317
85	Α	5818	5974	6582	6614	6930	7397	7422
86	В	5866	6022	8430	8461	9677	10233	10258
87	В	5925	6081	8489	8521	9737	10196	10221
88	В	5983	6139	8547	8577	9793	10280	10305
89	А	6038	6194	6802	6833	7149	7591	7616

芯片序号	芯片类 型	进仓时间	第一次 温育起 始时间	磁珠加 样起始 时间	第二次 温育起 始时间	清洗起 始时间	检测起 始时间	检测结 束时间
90	В	6086	6242	8650	8680	9896	10355	10380
91	А	6126	6282	6890	6919	7235	7828	7853
92	А	6173	6329	6937	6970	7286	7639	7664
93	В	6213	6369	8777	8810	10026	10463	10488
94	А	6307	6463	7071	7102	7418	7865	7890
95	А	6460	6616	7224	7255	7571	8120	8145
96	В	6510	6666	9074	9103	10319	10809	10834
97	В	6555	6711	9119	9151	10367	10876	10901
98	А	6610	6766	7374	7404	7720	8293	8318
99	А	6664	6820	7428	7457	7773	8340	8365
100	А	6722	6878	7486	7519	7835	8172	8197
101	В	6768	6924	9332	9362	10578	10925	10950
102	А	6822	6978	7586	7616	7932	8508	8533
103	В	6922	7078	9486	9518	10734	11081	11106
104	В	6964	7120	9528	9560	10776	11272	11297
105	В	7007	7163	9571	9604	10820	11412	11437
106	А	7051	7207	7815	7848	8164	8545	8570
107	В	7083	7239	9647	9678	10894	11309	11334
108	А	7125	7281	7889	7918	8234	8620	8645
109	В	7171	7327	9735	9766	10982	11489	11514
110	В	7202	7358	9766	9795	11011	11356	11381
111	В	7251	7407	9815	9846	11062	11527	11552
112	А	7216	7372	7980	8009	8325	8800	8825
113	А	7252	7408	8016	8046	8362	8702	8727
114	А	7307	7463	8071	8104	8420	8838	8863
115	В	7360	7516	9924	9954	11170	11744	11769
116	А	7399	7555	8163	8195	8511	8931	8956
117	А	7459	7615	8223	8255	8571	8980	9005
118	А	7846	8002	8610	8640	8956	9530	9555
119	В	7896	8052	10460	10489	11705	12103	12128

芯片序 号	芯片类 型	进仓时间	第一次 温育起 始时间	磁珠加 样起始 时间	第二次 温育起 始时间	清洗起始时间	检测起 始时间	检测结 束时间
120	А	7953	8109	8717	8748	9064	9459	9484
121	В	8006	8162	10570	10602	11818	12175	12200
122	В	8060	8216	10624	10656	11872	12316	12341
123	А	8119	8275	8883	8914	9230	9647	9672
124	А	8153	8309	8917	8949	9265	9768	9793
125	В	8110	8266	10674	10703	11919	12278	12303
126	В	8168	8324	10732	10762	11978	12363	12388
127	А	8216	8372	8980	9010	9326	9689	9714
128	В	8271	8427	10835	10866	12082	12433	12458
129	В	8329	8485	10893	10925	12141	12524	12549
130	В	8369	8525	10933	10962	12178	12600	12625
131	А	8418	8574	9182	9214	9530	10056	10081
132	А	9098	9254	9862	9892	10208	10545	10570
133	В	9149	9305	11713	11744	12960	13400	13425
134	А	9204	9360	9968	10000	10316	10722	10747
135	А	9276	9432	10040	10070	10386	10965	10990
136	В	9307	9463	11871	11902	13118	13512	13537
137	В	9352	9508	11916	11945	13161	13597	13622
138	В	9403	9559	11967	11997	13213	13660	13685
139	В	9451	9607	12015	12047	13263	13720	13745
140	В	9490	9646	12054	12083	13299	13894	13919
141	А	9547	9703	10311	10342	10658	11034	11059
142	А	9666	9822	10430	10459	10775	11206	11231
143	В	9714	9870	12278	12307	13523	14075	14100
144	В	9766	9922	12330	12362	13578	14011	14036
145	В	9818	9974	12382	12412	13628	14158	14183
146	В	9868	10024	12432	12465	13681	14210	14235
147	В	9927	10083	12491	12522	13738	14298	14323
148	В	10117	10273	12681	12711	13927	14480	14505
149	В	10152	10308	12716	12748	13964	14551	14576

芯片序 号	芯片类 型	进仓时间	第一次 温育起 始时间	磁珠加 样起始 时间	第二次 温育起 始时间	清洗起 始时间	检测起始时间	检测结 束时间
150	А	10418	10574	11182	11214	11530	11986	12011
151	В	10450	10606	13014	13043	14259	14629	14654
152	В	10506	10662	13070	13102	14318	14831	14856
153	В	10544	10700	13108	13141	14357	14768	14793
154	В	10584	10740	13148	13181	14397	14872	14897
155	В	10619	10775	13183	13212	14428	14958	14983
156	В	10678	10834	13242	13273	14489	15069	15094
157	В	10721	10877	13285	13314	14530	15124	15149
158	А	10751	10907	11515	11548	11864	12213	12238
159	В	10808	10964	13372	13402	14618	15161	15186
160	В	10865	11021	13429	13460	14676	15207	15232