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Abstract al., 1994). Here, utilization of the fifth-order phased Markov
Motivation: At the core of most protein gene-finding c_hain was based on the fact that the in-phz_alse-hex_amer statis-
algorithms are the coding measures used to make a decisits were thought of the most effect algorithm (Fickett and
on coding/non-coding. Of the protein coding measures, thE4ng, 1992).

Fourier measure is one of the most important. However, dueSince then, great progress has been made. Probably the most
to the limited length of the windows usually used, thénportant event that accompanied the development of com-
accuracy of the measure is not satisfactory. This paper Ruter-aided gene-finding studies in this period is the great ad-
devoted to improving the accuracy by lengthening th¥ance of personal computers and the Internet, including the
sequence to amplify the periodicity of 3 in the coding region¥Vorld Wide Web (WWW). A user can submit his (her) DNA
Results:A new algorithm is presented called the lengthenseguence via the Internet to some address or URL of WWW
shuffle Fourier transform algorithm. For the same windowfO have the sequence analyzed and returned automatically.
length, the percentage accuracy of the new algorithm isurthermore, users may have many choices. For example, for
6-7% higher than that of the ordinary Fourier transforman integrated gene identification task, they can choose FGE-
algorithm. The resulting percentage accuracy (average diEH (human), GenelD (vertebrate), GeneParser (human),
specificity and sensitivity) of the new measure is 84.9% fépenkang (dicots,Drosophila and vertebrates), GRAIL

the window length 162 bp (human) and EcoParsEgcherichia co)i, where the organ-
Availability: The program is available on request from iSms suitable for the special algorithm concerned are denoted
C.-T. Zhang within parentheses. For only a coding region identification
Contact: ctzhang@tju.edu.cn task, they can choose GeneMark (many individual species).
The detailed e-mail address or WWW URL for each of the
Introduction above network services are described in Tatéa recent

review by Fickett (1996). Readers may refer to other reviews
Computer-aided protein gene finding in uncharacterized gend papers for the relevant algorithm description (Matral,
nomic DNA sequences is one of the most important issues 1992; Borodovskgt al, 1994; Fickett, 1995; Gelfand, 1995;
bioinformatics. The problem seems to be simple, although ti@uigo and Fickett, 1995; Claverie, 1996; Fickett and Guigo,
algorithms may be complicated. For most prokaryotic DNAL996; Snyder and Stormo, 1996; etc.).
sequences, the problem is to determine which ORFs in a given
sequence are really coding sequences co_dlng for pro’gelns. Fr&¥ie 1. Fisher discriminant vectarand the corresponding threshéid
eukaryotic DNA sequences, the problem is to determine how
many exons and introns in a given sequence there are, adghdow length ¢, c cs t
what are th_e exact boundaries b_etween the_exons and |nt_ro| 'S3bp 0.805 0.109 0583 21095
In 1992, Fickett and Tung published a review paper whlch129 b

C . ! p 0.735 0.092 0.672 12.212
highlighted the progress of the gene-finding algorithms Pro- s
; p 0.704 0.382 0.599 11.722

posed over the past 13 years. The paper reviewed and syr
thesized the published algorithms, and compared them by@e decision on coding/non-coding for each DNA fragment with the given
standardized benchmark. They pointed out that future alg@ngth is performed by the criterion ofm> t/c-m< t, where the measure
rithms should be based on Fourier, run, ORF and the in-phaggtorm is defined by equation (4).
hexamer measures. Based on these conclusions, other powealthough great progress in computer-aided gene recogni-
ful gene recognition algorithms have been developed. Ftion studies has been made, the situation is still far from being
example, in GeneMark, the gene recognition algorithm usgakrfect. This may be reflected by the fact that no algorithm
the fifth-order phased Markov chain model (Borodovsky currently available can yield a 100% recognition accuracy in
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general cases. Furthermore, the parameters determined fqfAx, = x, — X,

an algorithm based on previously discovered sequences ca-Ay, =y, —vy,,, n=1,2, ..., N )

not be applied to identify genes on some recently discovereq A, — 7 — 7

sequences with an accuracy as high as before (Fickett, 1996

In addition, although the genetic codes are universal for all

organisms, the artificially invented computer algorithms arherex,, Ay, andAz, can qnly have the values of 1 or -1
generally only applicable to one or several organisms. TH€hang and Zhang, 1994x, is equal to 1 when thith base
reasons are still not clear. All of these indicate that the devdf A or G (purine), or —1 when tinth base is C or T (pyrimi-
opment of protein gene-finding algorithms is still in its earlydine); & is equal to 1 when theth base is A or C (amino-
stage. There is much room for further improvement. As meriP€), or —1 when theth base is G or T (keto-type). Similarly,
tioned above, Fickett and Tung (1992) pointed out that tH&% iS equal to 1 when theth base is A or T (weak hydrogen
Fourier measure is one of the most important gene recogfiond), or —1 when thath base is G or C (strong hydrogen
tion algorithms. In a recent review, Fickett (1996) still adond). Therefore, a DNA sequence can be decomposed into
dressed the importance of direct measure of periodicity of #lree series of digital signals, consisting of 1 or -1, each of
6 and 9 for a given DNA sequence to look for possible genéghlch has clear biological meaning. The first series of dlg!tal
However, due to the limited length (usually 100 bp or so) (ﬁlgrjal_s@q1 represents the distribution of the bases of the purlne/
the window used in the gene-finding process, the applicatidtyrimidines along the DNA sequences. The second 8fjes

of the Fourier measure is without impressive success. THigPresents the distribution of the bases of the amino/keto types
paper is devoted to improving the ordinary Fourier measufiong the sequence. Similarly, the third sekisgepresents the
currently available. A new algorithm called the lengthendistribution of the bases of the strong/weak hydrogen bonds
shuffle FFT algorithm is proposed. The resulting percentagong the sequence (Zhang, 1997).

accuracy (average of sensitivity and specificity) reaches

84.9% for a window length of 162 bp. It is hoped that the

algorithm proposed here is useful to improve the accuracy gf |engthen-shuffle Fourier transform

some existing gene-finding algorithms, as discussed later.

It is well known that there exists an imperfect periodicity of

3 in protein coding sequences (Silverman and Linsker, 1986;
Trifonov, 1987; Lioet al, 1994; etc.), which is the basis of
our method to distinguish between coding and non-coding
sequences. For a long sequence, say, longer than 1024 bp, it
is easier to detect the periodicity by the FFT algorithm, but
for a short sequence, say, shorter than 150 bp or even much
&ho ter, a typical window size usually used, the periodicity
cannot be easily detected by applying the FFT algorithm
ctly. To solve the problem, the relatively short DNA se-
rEﬂjence is first lengthened by repeating the sequétioees,

. o whereK is an integer >1. For a sequence with 150 bp, for
sequence inspected. Denote the four positive integeks, by example, taking(g 8. we obtain a?lengthened DNApse—

Ch, Gy andT,, respectively. The Z curve consists of a Serieauence with a length of8150 = 1200 bp. Because the FFT

of nodesh, (N=1, 2,..., N), whose coordinates are denOtGdal orithm needs data number to Bérids a positive integer
by %, Yh andz It was shown that (Zhang and Zhang, 1994)ihgle sequence of the first 10241‘1)2%% is IfL)Jsed in thegFF)1"

program to detect the periodicity. Obviously, a bogus period-

Algorithm
Format of Z curves

Consider a DNA sequence withbases read from the 5-end
to the 3-end. Beginning from the first base, inspect the s
guence one base at atime. Let the number of steps be den
byn,i.e.n=1, 2,..., N. In thenth step, count the cumulative dire
numbers of the bases A, C, G and T, respectively, occurri
in the subsequence from the first to tkiebase in the DNA

Xn f 2(An + Gy) =, B icity of 150 will be observed in the power spectrum of the
Yo=2A+C)—-n n=0 1., N (1) FFT in the example case. To eliminate such a bogus period-
zy=2A+T) —n,

icity, and at the same time keep the periodicity of 3 un-
changed, the lengthened sequence is then shivfieahes
whereAq = Cop = Gg = Tg = 0 and thusg =yp =2p=0. The  with three consecutive bases as a unit. A typical valis of
connection of the nod& (i.e. the origin)Py, P2, ...,Pyone  used here is 10 000.

by one by lines is defined as the Z curve of the DNA se- As mentioned above, based on the format of the Z curve,
guence inspected. It was demonstrated that the Z curve camy DNA sequence can be transformed into three series of
tains all the information in the DNA sequence, and vicdigital signalsAx,, Ay, andAz,, to which we can apply the
versa; each can be reconstructed given the other. We tHeRT algorithm. The power spectrum for each digital series is
define: calculated as follows:
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| 2 The Fisher linear discriminant equation in this case repre-
P = § z Acpexp[—i2n(f/N)n]| , =1, 2, ., N (3) sents a plane in the 3D space, described by a \@aioich
n=1 has three componentsg ¢, andcs. The determination afis

whereP(f) is the power spectrum associated Withwhich ~ Simple. Denoted by andW, the total covariance matrix and
representdx,, Ay, andAz,, respectively. It is well known the within-population covariance matrix, respectively, we de-
that protein coding genes may exist in one of three possitiée B =T —W. Using the data in the training set, we calculate
phases of either strands of a DNA double helix. One advaf- W andB for each window length. The eigenvector asso-
tage of the present method is that the coding measure for §igted with the maximum eigenvaluewf'B is the desired

phases can be explored simultaneously. vectorc (Mardiaet al, 1979). The vectaris not unique in the
The detailed procedure of our method is described as fétense that multiplied by a constant is still acceptable. With-
lows. out losing generality, we choose the constant suchcthat

. . . 1. We should point out that the within-population covariance
1. Given a DNA sequence with any relatively short Iengﬂ\'natrixW is not singular in our case. So, utilization of the Pen-

WhiCht.ShO?rl]d be_ amultiple of 3, Iengthﬁn the seﬂutinc?kla se discriminant algorithm (Fickett and Tung, 1992) is not
Irepet?]ln?th (T glvt(;n se(;quence maf‘y;lfgg un 'Th € 10lR cessary. Based on the data in the training set, an appropriate
ength ot the lengthened sequence IS . Then reshold for each window length is determined to make the
the first 1024 bp of the resulting sequence are used as ing/non-coding decision. The thresktatcuniquely deter-

input of the FFT algorithm. mined b . L e .
- L y equalizing the sensitivity and specificity or, equival-
2. To eliminate the bogus periodicity due to the repeat prq- . N . i
cedure, and at the same time keep the periodicity of Ently, by making the false-negative rate and the false-positive

huffle th ki t least 10 000 i rate be identical. Once the veatand the thresholdare ob-
snuitie e resuiting sequence at 1eas IMEs Wi ined, the decision on coding/non-coding for each fragment

three consecutive bases as a unit at each shuffling step, o o
. X ~In the test set is simply performed by the criteriorc-ofi >
3. Transform the shuffled sequence into three series of digital . '+ the (Iavallua?i())/npof the Ieng%/hen-shLIJffI(Ie FFT algo-

sighals A%, Ay, andAz,, according to equation (2). fithm is sim ; .
ply described by the percentage accuracy, which
4. Calcule_tte the power spectrum for eadvaf Ay, andAz is the average of the sensitivity and specificity.
to obtain the three numbd?y(N/3), B, (N/3) andP,(N/3)

according to equation (3), whelké= 1024. Note that

1024/3 is not an integer. To solve this minor problem, thResults and discussion

maximum power spectra within the small interval

(1024/3)+ 2 in the frequency axisre taken as the values The window lengths 63, 64, 128, 129 and 162 bp are studied
of P(N/3), R,(N/3) andP,(N/3). here. The lengthen-shuffle FFT algorithm is applied to the

window lengths 63, 129 and 162 bp, respectively. The ordi-

nary FFT algorithm, but based on the format of the Z curve,

is applied to the window lengths 64 and 128 bp, respectively.

The standardized benchmark to evaluate the algorithms usEge DNA sequences are obtained from the human genome
by Fickett and Tung (1992) is used again here to evaluate tiethe GenBank (Burks and Burks, 1988). The vectand
lengthen-shuffle FFT algorithm. For the reader’s convenithe threshold for each of the window lengths 63, 129 and
ence, we describe the whole procedure briefly. For each wih2 bp are listed in Table The false-negative rate, the false-
dow length, 1000 fragments of DNA sequences in fully cogROSitive rate and the percentage accuracy (average of the
ing regions or exons are prepared in advance. At the sarpnsitivity and specificity) for the fragments in the test set fqr
time, 1000 fragments of DNA sequences of fully non—codinéfr‘e window lengths 63, 64, 128, 129 and 162 are listed in
regions or introns are also prepared in advance. Each set'@Ple2. Note that the lengthen-shuffle FFT algorithm is ap-
1000 fragments is divided randomly into two equal parts, i.@/i€d only to the lengths 63, 129 and 162, and the ordinary
500 are used as the training set and another 500 as the testdet, @l9orithm is applied only to the lengths 64 and 128. Both
Consequently, both the training and test sets consist of 108tg0rithms are based on the format of Z curves. We compare
fragments; 500 are fully coding and another 500 are fuIIV‘e false-negative rate, th(_e false-positive rate and their per-
non-coding, respectively. Then the Fisher discriminant algd:entage accuracy of the window lengths 64 with those of 63,
rithm is used to distinguish between the coding and non-cod¢8 With 129. The false-negative rate is defined as the frac-
ing fragments. In our case, a three-dimensional (3D) spaE@n oferrors on the co_dlng windows. The false-p03|_t|ve rate
is spanned by the three numb@gN/3), Py(N/3) and is defined as the fraction of errors on the non—pqdlng win-
P,(N/3), denoted by a 3D vectar hereafter. The vecton dows. Consequently, the sensitivity and specificity are de-

The benchmark to evaluate the algorithm

has three components, m, andmg, where: f@ned simply by (1_— false—nggative rate) and (1 — false-posi-
tive rate), respectively. We find that the percentage accuracy
my = Px(N/3), mp = Ry(N/3) andmg = P,(N/3) (4) (average of the sensitivity and specificity) of the lengthen-
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shuffle FFT algorithm is higher than that of the ordinary FFThe translation process. It was found early that the preferred co-
algorithm. In the window length studied here, the accuracgons are of the pattern RNY, where R and Y represent the purine
of the new algorithm is 6—7% higher than that of the ordinargind pyrimidine bases, respectively (Shepherd, 1984). Based on
algorithm. Interestingly, the increase in accuracy is not onlg graphic technique (Zhang and Zhang, 1991), we have ob-
due to the decrease in the false-negative rate, indicating tisatved that the predominant bases in the first codon position are
the signal is amplified, but also due to the decrease in tipirines. This finding is true fdt.coli (Zhang and Chou, 1994),
false-positive rate, indicating that the noise is suppresseguman (Zhang and Chou, 1993), HIV (Chou and Zhang, 1992)
This fact strongly implies that the lengthen-shuffle pro-and many other species (data not yet published). Obviously, the
cedure really raises the ratio of signal/noise. Note that thebove periodicity of 3 can be detected by the measure
databases of 63 and 64 bp are almost identical. In fact, vi&N/3) defined above. Compared with = P,(N/3) andmg =
first choose a fragment of 64 bp as an element in the datab@&g\/3), my = B(N/3) seems to be less important for detecting
of 64 bp. Deleting the 64th base from this fragment, we ohhe 3-periodicity in DNA sequences. Becauseytbemponent
tain a fragment of 63 bp, which is exactly the correspondingf the Z curve reflects only the distribution of the bases of
element in the database of 63 bp. A similar situation takegnino/keto type along the sequence, it seems to us that the bases
place between the databases of 128 and 129 bp. Therefaseamino/keto (M/K) type have less biological significance than
the percentage accuracy of the lengthen-shuffle FFT algéhose of purine/pyrimidine (R/Y) and strong H bond/weak H
rithm is on average 6.5% higher than that of the direct (i.@ond (S/W) types. This is also reflected by the fact that the
without the lengthen-shuffle procedure) FFT algorithm. Almagnitude ofc, is generally far less thar andcs (refer to
though 6.5% is not a high value, it might be useful to improvgaple1). See the discussion below with respect to this point, too.
the accuracy of some existing gene recognition algorithms. According to the theory of the Z curve (Zhang and Zhang,
1994; Zhang, 1997), any DNA sequence can be decomposed
Table 2. The fals_e—nege_ltive rate, the false—posit_ive rate and the percentagqnig RY, MK and SW sequence, corresponding toxtyeand
accuracy for various window lengths and algorithms z components of the Z curve, respectively. Consequently, vari-
Window length 64bF  63bP 128bF 129bF 162 bp ous 3-periodicity of DNA sequences can be detected simulta-
neously by the coding measure vectoproposed here. The
three componentsy, mpy andmg of the vectom measure the
3-periodicity of bases of the purine/pyrimidine (R/Y), amino/
keto (M/K) and strong H bond/weak H bond (S/W) types, re-
aJse the ordinary FFT algorithm, based on the format of the Z curve. spectively, in the DNA sequence studied. To compare the im-
bUse the lengthen-shuffle FFT algorithm, based on the format of the Z curvportance of the three measumgs m, andmg more clearly, we
€The false-negative rate is the fraction of errors on the coding windows. haye performed the foIIowing test. Deleting one component

dThe false-positive rate is the fraction of errors on the non-coding window: . .
€The percentage accuracy is the average of the sensitivity and specificity, ﬁ(raom the 3D vectom each time, we obtain three 2D vectors.

the average of (1 — false-negative rate) and (1 — false-positive rate). They are denoted by = (my, mp), M3 = (M, Mg) andmy3
= (m, mg), respectively. Replacing the 3D veatoby the 2D

The periodicity of 3 in the coding regions was observed byectorsmaz, mp3 andm;s, respectively, we hope to see what
many authors (Silverman and Linsker, 1986; Trifonov, 198ill happen. The database of the window length 162 bp is used
Lio et al, 1994; etc.). Silverman and Linsker studied the overalP test this idea. Repeating exactly the same lengthen-shuffle
patterns of periodicity in DNA sequences by the FFT algorithnRrocedure and using the standardized evaluation benchmark, we
On the contrary, Li@t al (1994) studied the periodicity of G obtain the percentage accuracy (average of the sensitivity and
+ C in the third codon position. They first transformed the DN/specificity) for each case, i.e. fon 2, mpzandm; 3, respective-
sequence studied into S and W sequence, where S represeniis e results are listed in TatiieAs we can see, the accuracy
or C and W represents A or T. Furthermore, S bases are codetived frommy, is worse than that fromnys, and both are
as 1 and W bases are coded as —1. Accordingly, the DNA swerse than that froormy, indicating that the 3-periodicity of
quence studied was transformed into a series of 1 and —1. Babedes of the amino/keto (M/K) types is less important than those
on this format, the periodicity of G + C in the third codon posiof the purine/pyrimidine (R/Y) and strong H bond/weak H bond
tion was studied by the correlation function and FFT methodS/W) types. It seems that the 3-periodicity of bases of the strong
(Lio et al, 1994). Interestingly enough, the series they used i$ bond/weak H bond (S/W) type is more important than that
exactly the minus z component of the Z curve. Therefore, ttag purine/pyrimidine (R/Y) type. Consequently, the order of im-
periodicity they observed can be detected by the maagure portance seems to be, m; andmp. Furthermore, the accuracy
P,(N/3) defined above. On the other hand, Trifonov found af all three 2D vectors is worse than that of the 3D veator
G-non—G-N paittern in the coding regions, where N represerslicating that all ofry, mp andng have their respective con-
any base (Trifonov, 1987). Trifonov suggested that the patteinibution to the overall recognition accuracy, even including the
may be responsible for a reading frame correcting effect durimpmponentry.

False-negative rafte 0.318 0.260 0.226 0.134  0.108
False-positive rafe  0.296 0.240 0.316 0.258 0.194
Accuracy? 0.693 0.750 0.729 0.804 0.849
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Table 3.The percentage accuracy of various measures for window length

14
162 b | e Coding
Measure®  mj» Mos M3 m 27 ° Noncoding
Accuracy 0.707 0.778 0.830 0.849 10+
3Based on the lengthen-shuffle FFT algorithm. o o
bThe various measure vectors are defined agmy, mp, mg), M12= (My, My), g

M3 = (mp, mg) andmi3 = (M, mg), wheremy, mp andmg measure the 3-peri-
odicity of RY, MK and SW sequences, respectively. See equation (4).
CAverage of sensitivity and specificity.

Based on the above analysis, the importanos aindmg
reminds us to compare the results of the lengthen-shuffle  °7

FFT and the ordinary FFT algorithm schematically by using
a 2D diagram. Let theandy axes represent; andmg, re-
spectively. The distribution ofi, andmg can be displayed on
the 2D coordinate plane. The databases of the window
lengths 128 and 129 bp are used as examples. Consider the g, |
database of 128 bp first. Accordingly, 1000 coding points
representing 1000 coding fragments (including 500 in the
training set and another 500 in the test set) and 1000 non-cod- 7

. . (b)

el

Coding
Noncoding

ing points representing 1000 non-coding fragments (500 in

the training set and another 500 in the test set) are distributeéi 404
in Figurela. The coding points are denoted by open circles

and the non-coding points by filled circles. Then consider the
database of 129 bp. The corresponding distribution is shown 207
in Figurelb. Again, the coding points are denoted by open
circles and the non-coding points by filled circles. Note that |
the database of 128 bp and the database of 129 bp are almost
identical, as mentioned above. Compare Fidarand b. As o 2 4 & 8 100
we can see, the coding points diverge wider after the m,
lengthen-shuffle procedure than before, indicating that the

signal of 3-periodicity is amplified. At the same time, the Fig- 1. The graph ofrg versusm, wherems andm measure the
distribution area of the non-coding points is relatively shrunl@'per;';d;‘;'e%‘e’:ii’g fr‘gf'n'?Jesfr‘;ﬁ‘rf;‘)’/esﬁfzgi‘;itt"éi’r)]ygethdea\t;:(jow
gfterthe lengthen-shuffle procedure, indicating that the nms%?llgth 128 bp andbj from the lengthen-shuffle FET algorithm for
is suppressed. Consequently, the overlap between the

-

T T 1
120 140

% window length 129 bp. Note that the database of 128 bp and that

kinds of points is reduced and the ratio of the signal/noise iéf 129 bp are almost identical. On each figure, there are 1000 coding

_raised by the |en9then'3hu_ﬂ|e p_rocedure, as also quantitafyints representing 1000 coding fragments (denoted by filled
ively reflected by the data listed in TaBleBesides, we can

circles) and 1000 non-coding points representing 1000 non-coding

find other useful thing from Figurka and b. As we can see, fragments (denoted by open circles). Compare (a) with (b). Note that
the two kinds of points overlap severely. This is the reasothe coding points diverge wider after the lengthen-shuffle procedure

why we cannot reach a 100% recognition accuracy. It seenmigan before, indicating that the signal of 3-periodicity is amplified.
that there is really no obvious 3-periodicity for most of theThe distribution area of the non-coding points is relatively shrunk
non-coding fragments and so too for a number of Codin@ﬁer the lengthen-shuffle procedure, indicating that the noise is
fragments. In other words, there is no obvious 3-periodicity?!PPressed. Consequently,
for a considerable fraction of coding sequences. The reas@‘? then-shuff q
is still not clear. This fact leads to the conclusion thata 10096 9o > v procedure.
recognition accuracy probably could not be reached based

solely on the 3-periodicity detection.

the overlap between the two kinds of
ints is reduced and the ratio of the signal/noise is raised by the

strand. It can be shown that the result obtained in the direct

One advantage of the present method is that the codisgand can be applied to the complementary strand directly.
potential of six phases in a DNA double helix can be extherefore, the present method provides a tool to scan the
plored simultaneously. The method proposed here is of tli®uble helix quickly to explore the coding potential. Related
‘region-coding’ (Fickett and Tung, 1992). The result of outto the lengthen-shuffle procedure, the second advantage of
method has no apparent difference for three phases in a dirthet present method is that the result is quite insensitive to the
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sequencing errors that are substitutions, but it may be veBjaverie,J.-M. (1996) Effective large-scale sequence similarity
sensitive to frame-shift sequencing errors. Besides the aboveearchesMethods Enzymgl266, 212-227. o
two advantages, there is a third possible advantage. Since f@u.K.-C. and Zhang,C.-T. (1992) Diagrammatization of codon
3-periodicity is generally a coherent feature for most of the usage in 339 human immunodeficiency virus protein coding
coding DNA sequences, it is expected that the method andgseduences and its biological implicatioAlDS Res. Human
its improved version could be applied to recently discovered Retrovirusess, 1967-1976. ' -
sequences with an accuracy as high as to previously discGuekett:J-W. (1995) ORFs and genes: how strong a connedtion’
ered sequences, which are used to derive the Fisher discric®™P- Biok 2, 117-123.
minant vectoc and the threshold Fickett,J.W. (1996) Finding genes by computer: the state of the art.
For the window length 162 bp, the percentage accuracy EfTrends Geneticd.2, 316-320. . R
. ickett,J.W. and Guigo,R. (1996) In Computational gene identifica-

the lengthen-shuffle FFT algorithm reaches 84.9% (seetion Swindell,S.R., Miller,R.R. and Myers,G. (edejernet for the

0, . . . . ] [AdLAAYT] LA ’ .
$:E:2§)’0? é:crlllgtrgintga;]u:lge (iggg)spﬁg?én%;/?gjees||:jsé§(:itrl12 Molecular Biologist Horizon Scientific Press, Norfolk, UK, pp.

. ’ L 73-100.

3-per_|od|C|ty, 2-, 4'1 5-, 6-, 7-, 8-and 9—per!od|C|ty Were alsc?:ickett,J.W. and Tung,C.-S. (1992) Assessment of protein coding
considered to obtain the accuracy 80.8% in Tal(Eickett measuresNucleic Acids Res20, 6441—6450.

and Tung, 1992). It is hoped that the accuracy of thgeitand,M.S. (1995) Prediction of function in DNA sequence analysis.
lengthen-shuffle FFT algorithm could be improved further 3. comp. Bial 2, 87-115.

by taking other periodicity into account. The meaning of OUGuigo,R. and Fickett,J.W. (1995) Distinctive sequence features in
work is not only of theoretical interest, but also for some real- protein coding, genic non-coding and intergenic himan DBIA.
istic applications. By collaborating on the present algorithm Mol. Biol., 253 51-60.

with other existing algorithms, the accuracy of the joint algotio,P., Ruffo,S. and Buiatti,M. (1994) Third codon G+C periodicity as
rithm would be increased more than without such collabor- a possible signal for an internal selective constrairheor. Bial,
ation. For example, there are some artificial intelligence ap-171, 215-223.

proaches to the protein gene-finding problem, e.g. GRAIMardia,K.V., Kent,J.T. and Bibby,J.M. (197Bjultivariate Analysis
used the neural network to recognize the coding regions orAcademic Press, London.

exons (Murakt al, 1992). By changing the form of the out- Mural,R.J., Einstein,J.R., Guan,X., Mann,R.C. and Uberbacher,E.C.
put result of the present algorithm appropriately, we suggest(1992) An artificial inFeIIigence approach to DNA sequence feature
that the output of the present algorithm may served as arf€cognition-Trends Biotechnoll0, 66-69. _ _
additional input of the neural network of GRAIL. Since theShepherd,J.C.W. (1984) Fo_ssn remnants of a primeval genetic code in
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