
A new Fourier transform approach for protein
coding measure based on the format of the Z
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Abstract
Motivation: At the core of most protein gene-finding
algorithms are the coding measures used to make a decision
on coding/non-coding. Of the protein coding measures, the
Fourier measure is one of the most important. However, due
to the limited length of the windows usually used, the
accuracy of the measure is not satisfactory. This paper is
devoted to improving the accuracy by lengthening the
sequence to amplify the periodicity of 3 in the coding regions.
Results: A new algorithm is presented called the lengthen-
shuffle Fourier transform algorithm. For the same window
length, the percentage accuracy of the new algorithm is
6–7% higher than that of the ordinary Fourier transform
algorithm. The resulting percentage accuracy (average of
specificity and sensitivity) of the new measure is 84.9% for
the window length 162 bp.
Availability: The program is available on request from
C.-T. Zhang.
Contact: ctzhang@tju.edu.cn

Introduction

Computer-aided protein gene finding in uncharacterized ge-
nomic DNA sequences is one of the most important issues of
bioinformatics. The problem seems to be simple, although the
algorithms may be complicated. For most prokaryotic DNA
sequences, the problem is to determine which ORFs in a given
sequence are really coding sequences coding for proteins. For
eukaryotic DNA sequences, the problem is to determine how
many exons and introns in a given sequence there are, and
what are the exact boundaries between the exons and introns.
In 1992, Fickett and Tung published a review paper which
highlighted the progress of the gene-finding algorithms pro-
posed over the past 13 years. The paper reviewed and syn-
thesized the published algorithms, and compared them by a
standardized benchmark. They pointed out that future algo-
rithms should be based on Fourier, run, ORF and the in-phase
hexamer measures. Based on these conclusions, other power-
ful gene recognition algorithms have been developed. For
example, in GeneMark, the gene recognition algorithm used
the fifth-order phased Markov chain model (Borodovsky et

al., 1994). Here, utilization of the fifth-order phased Markov
chain was based on the fact that the in-phase-hexamer statis-
tics were thought of the most effect algorithm (Fickett and
Tung, 1992).

Since then, great progress has been made. Probably the most
important event that accompanied the development of com-
puter-aided gene-finding studies in this period is the great ad-
vance of personal computers and the Internet, including the
World Wide Web (WWW). A user can submit his (her) DNA
sequence via the Internet to some address or URL of WWW
to have the sequence analyzed and returned automatically.
Furthermore, users may have many choices. For example, for
an integrated gene identification task, they can choose FGE-
NEH (human), GeneID (vertebrate), GeneParser (human),
GenLang (dicots, Drosophila and vertebrates), GRAIL
(human) and EcoParse (Escherichia coli), where the organ-
isms suitable for the special algorithm concerned are denoted
within parentheses. For only a coding region identification
task, they can choose GeneMark (many individual species).
The detailed e-mail address or WWW URL for each of the
above network services are described in Table 1 of a recent
review by Fickett (1996). Readers may refer to other reviews
and papers for the relevant algorithm description (Mural et al.,
1992; Borodovsky et al., 1994; Fickett, 1995; Gelfand, 1995;
Guigo and Fickett, 1995; Claverie, 1996; Fickett and Guigo,
1996; Snyder and Stormo, 1996; etc.).

Table 1. Fisher discriminant vector c and the corresponding threshold ta

Window length c1 c2 c3 t

63 bp 0.805 0.109 0.583 21.095

129 bp 0.735 0.092 0.672 12.212

162 bp 0.704 0.382 0.599 11.722

aThe decision on coding/non-coding for each DNA fragment with the given
length is performed by the criterion of c·m > t/c·m < t, where the measure
vector m is defined by equation (4).

Although great progress in computer-aided gene recogni-
tion studies has been made, the situation is still far from being
perfect. This may be reflected by the fact that no algorithm
currently available can yield a 100% recognition accuracy in
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general cases. Furthermore, the parameters determined for
an algorithm based on previously discovered sequences can-
not be applied to identify genes on some recently discovered
sequences with an accuracy as high as before (Fickett, 1996).
In addition, although the genetic codes are universal for all
organisms, the artificially invented computer algorithms are
generally only applicable to one or several organisms. The
reasons are still not clear. All of these indicate that the devel-
opment of protein gene-finding algorithms is still in its early
stage. There is much room for further improvement. As men-
tioned above, Fickett and Tung (1992) pointed out that the
Fourier measure is one of the most important gene recogni-
tion algorithms. In a recent review, Fickett (1996) still ad-
dressed the importance of direct measure of periodicity of 3,
6 and 9 for a given DNA sequence to look for possible genes.
However, due to the limited length (usually 100 bp or so) of
the window used in the gene-finding process, the application
of the Fourier measure is without impressive success. This
paper is devoted to improving the ordinary Fourier measure
currently available. A new algorithm called the lengthen-
shuffle FFT algorithm is proposed. The resulting percentage
accuracy (average of sensitivity and specificity) reaches
84.9% for a window length of 162 bp. It is hoped that the
algorithm proposed here is useful to improve the accuracy of
some existing gene-finding algorithms, as discussed later.

Algorithm

Format of Z curves

Consider a DNA sequence with N bases read from the 5-end
to the 3-end. Beginning from the first base, inspect the se-
quence one base at a time. Let the number of steps be denoted
by n, i.e. n = 1, 2, …, N. In the nth step, count the cumulative
numbers of the bases A, C, G and T, respectively, occurring
in the subsequence from the first to the nth base in the DNA
sequence inspected. Denote the four positive integers by An,
Cn, Gn and Tn, respectively. The Z curve consists of a series
of nodes Pn (n = 1, 2, …, N), whose coordinates are denoted
by xn, yn and zn. It was shown that (Zhang and Zhang, 1994):

�
�
�

xn � 2(An � Gn) � n,
yn � 2(An � Cn) � n, n � 0, 1,���, N
zN � 2(An � Tn) � n,

(1)

where A0 = C0 = G0 = T0 = 0 and thus x0 = y0 = z0 =0. The
connection of the nodes P0 (i.e. the origin), P1, P2, …, PN one
by one by lines is defined as the Z curve of the DNA se-
quence inspected. It was demonstrated that the Z curve con-
tains all the information in the DNA sequence, and vice
versa; each can be reconstructed given the other. We then
define:

�
�

�

�xn � xn � xn–1,
�yn � yn � yn–1, n � 1, 2, ���, N
�zn � zn � zn–1,

(2)

where ∆xn, ∆yn and ∆zn can only have the values of 1 or –1
(Zhang and Zhang, 1994). ∆xn is equal to 1 when the nth base
is A or G (purine), or –1 when the nth base is C or T (pyrimi-
dine); ∆yn is equal to 1 when the nth base is A or C (amino-
type), or –1 when the nth base is G or T (keto-type). Similarly,
∆zn is equal to 1 when the nth base is A or T (weak hydrogen
bond), or –1 when the nth base is G or C (strong hydrogen
bond). Therefore, a DNA sequence can be decomposed into
three series of digital signals, consisting of 1 or –1, each of
which has clear biological meaning. The first series of digital
signals ∆xn represents the distribution of the bases of the purine/
pyrimidines along the DNA sequences. The second series ∆yn
represents the distribution of the bases of the amino/keto types
along the sequence. Similarly, the third series ∆zn represents the
distribution of the bases of the strong/weak hydrogen bonds
along the sequence (Zhang, 1997).

A lengthen-shuffle Fourier transform

It is well known that there exists an imperfect periodicity of
3 in protein coding sequences (Silverman and Linsker, 1986;
Trifonov, 1987; Lio et al., 1994; etc.), which is the basis of
our method to distinguish between coding and non-coding
sequences. For a long sequence, say, longer than 1024 bp, it
is easier to detect the periodicity by the FFT algorithm, but
for a short sequence, say, shorter than 150 bp or even much
shorter, a typical window size usually used, the periodicity
of 3 cannot be easily detected by applying the FFT algorithm
directly. To solve the problem, the relatively short DNA se-
quence is first lengthened by repeating the sequence K times,
where K is an integer >1. For a sequence with 150 bp, for
example, taking K = 8, we obtain a lengthened DNA se-
quence with a length of 8 × 150 = 1200 bp. Because the FFT
algorithm needs data number to be 2n (n is a positive integer),
the sequence of the first 1024 (210) bp is used in the FFT
program to detect the periodicity. Obviously, a bogus period-
icity of 150 will be observed in the power spectrum of the
FFT in the example case. To eliminate such a bogus period-
icity, and at the same time keep the periodicity of 3 un-
changed, the lengthened sequence is then shuffled M times
with three consecutive bases as a unit. A typical value of M
used here is 10 000.

As mentioned above, based on the format of the Z curve,
any DNA sequence can be transformed into three series of
digital signals, ∆xn, ∆yn and ∆zn, to which we can apply the
FFT algorithm. The power spectrum for each digital series is
calculated as follows:
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Pc(f) �
1
N ��

N

n � 1

�cn exp[� i2�(f�N)n]�
2

, f � 1, 2, ���, N (3)

where Pc(f) is the power spectrum associated with ∆cn which
represents ∆xn, ∆yn and ∆zn, respectively. It is well known
that protein coding genes may exist in one of three possible
phases of either strands of a DNA double helix. One advan-
tage of the present method is that the coding measure for six
phases can be explored simultaneously.

The detailed procedure of our method is described as fol-
lows.

1. Given a DNA sequence with any relatively short length,
which should be a multiple of 3, lengthen the sequence by
repeating the given sequence many times until the total
length of the lengthened sequence is >1024 (210) bp. Then
the first 1024 bp of the resulting sequence are used as the
input of the FFT algorithm.

2. To eliminate the bogus periodicity due to the repeat pro-
cedure, and at the same time keep the periodicity of 3,
shuffle the resulting sequence at least 10 000 times with
three consecutive bases as a unit at each shuffling step.

3. Transform the shuffled sequence into three series of digital
signals, ∆xn, ∆yn and ∆zn, according to equation (2).

4. Calculate the power spectrum for each of ∆xn, ∆yn and ∆zn
to obtain the three numbers Px(N/3), Py(N/3) and Pz(N/3)
according to equation (3), where N = 1024. Note that
1024/3 is not an integer. To solve this minor problem, the
maximum power spectra within the small interval
(1024/3) ± 2 in the frequency axis f are taken as the values
of Px(N/3), Py(N/3) and Pz(N/3).

The benchmark to evaluate the algorithm

The standardized benchmark to evaluate the algorithms used
by Fickett and Tung (1992) is used again here to evaluate the
lengthen-shuffle FFT algorithm. For the reader’s conveni-
ence, we describe the whole procedure briefly. For each win-
dow length, 1000 fragments of DNA sequences in fully cod-
ing regions or exons are prepared in advance. At the same
time, 1000 fragments of DNA sequences of fully non-coding
regions or introns are also prepared in advance. Each set of
1000 fragments is divided randomly into two equal parts, i.e.
500 are used as the training set and another 500 as the test set.
Consequently, both the training and test sets consist of 1000
fragments; 500 are fully coding and another 500 are fully
non-coding, respectively. Then the Fisher discriminant algo-
rithm is used to distinguish between the coding and non-cod-
ing fragments. In our case, a three-dimensional (3D) space
is spanned by the three numbers Px(N/3), Py(N/3) and
Pz(N/3), denoted by a 3D vector m hereafter. The vector m
has three components m1, m2 and m3, where:

m1 = Px(N/3), m2 = Py(N/3) and m3 = Pz(N/3) (4)

The Fisher linear discriminant equation in this case repre-
sents a plane in the 3D space, described by a vector c which
has three components c1, c2 and c3. The determination of c is
simple. Denoted by T and W, the total covariance matrix and
the within-population covariance matrix, respectively, we de-
fine B = T – W. Using the data in the training set, we calculate
T, W and B for each window length. The eigenvector asso-
ciated with the maximum eigenvalue of W–1B is the desired
vector c (Mardia et al., 1979). The vector c is not unique in the
sense that c multiplied by a constant is still acceptable. With-
out losing generality, we choose the constant such that |c|2 =
1. We should point out that the within-population covariance
matrix W is not singular in our case. So, utilization of the Pen-
rose discriminant algorithm (Fickett and Tung, 1992) is not
necessary. Based on the data in the training set, an appropriate
threshold t for each window length is determined to make the
coding/non-coding decision. The threshold t is uniquely deter-
mined by equalizing the sensitivity and specificity or, equival-
ently, by making the false-negative rate and the false-positive
rate be identical. Once the vector c and the threshold t are ob-
tained, the decision on coding/non-coding for each fragment
in the test set is simply performed by the criterion of c·m >
t/c·m < t. The evaluation of the lengthen-shuffle FFT algo-
rithm is simply described by the percentage accuracy, which
is the average of the sensitivity and specificity.

Results and discussion

The window lengths 63, 64, 128, 129 and 162 bp are studied
here. The lengthen-shuffle FFT algorithm is applied to the
window lengths 63, 129 and 162 bp, respectively. The ordi-
nary FFT algorithm, but based on the format of the Z curve,
is applied to the window lengths 64 and 128 bp, respectively.
The DNA sequences are obtained from the human genome
in the GenBank (Burks and Burks, 1988). The vector c and
the threshold t for each of the window lengths 63, 129 and
162 bp are listed in Table 1. The false-negative rate, the false-
positive rate and the percentage accuracy (average of the
sensitivity and specificity) for the fragments in the test set for
the window lengths 63, 64, 128, 129 and 162 are listed in
Table 2. Note that the lengthen-shuffle FFT algorithm is ap-
plied only to the lengths 63, 129 and 162, and the ordinary
FFT algorithm is applied only to the lengths 64 and 128. Both
algorithms are based on the format of Z curves. We compare
the false-negative rate, the false-positive rate and their per-
centage accuracy of the window lengths 64 with those of 63,
128 with 129. The false-negative rate is defined as the frac-
tion of errors on the coding windows. The false-positive rate
is defined as the fraction of errors on the non-coding win-
dows. Consequently, the sensitivity and specificity are de-
fined simply by (1 – false-negative rate) and (1 – false-posi-
tive rate), respectively. We find that the percentage accuracy
(average of the sensitivity and specificity) of the lengthen-
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shuffle FFT algorithm is higher than that of the ordinary FFT
algorithm. In the window length studied here, the accuracy
of the new algorithm is 6–7% higher than that of the ordinary
algorithm. Interestingly, the increase in accuracy is not only
due to the decrease in the false-negative rate, indicating that
the signal is amplified, but also due to the decrease in the
false-positive rate, indicating that the noise is suppressed.
This fact strongly implies that the lengthen-shuffle pro-
cedure really raises the ratio of signal/noise. Note that the
databases of 63 and 64 bp are almost identical. In fact, we
first choose a fragment of 64 bp as an element in the database
of 64 bp. Deleting the 64th base from this fragment, we ob-
tain a fragment of 63 bp, which is exactly the corresponding
element in the database of 63 bp. A similar situation takes
place between the databases of 128 and 129 bp. Therefore,
the percentage accuracy of the lengthen-shuffle FFT algo-
rithm is on average 6.5% higher than that of the direct (i.e.
without the lengthen-shuffle procedure) FFT algorithm. Al-
though 6.5% is not a high value, it might be useful to improve
the accuracy of some existing gene recognition algorithms.

Table 2. The false-negative rate, the false-positive rate and the percentage
accuracy for various window lengths and algorithms

Window length 64 bpa 63 bpb 128 bpa 129 bpb 162 bpb

False-negative ratec 0.318 0.260 0.226 0.134 0.108

False-positive rated 0.296 0.240 0.316 0.258 0.194

Accuracye 0.693 0.750 0.729 0.804 0.849

aUse the ordinary FFT algorithm, based on the format of the Z curve.
bUse the lengthen-shuffle FFT algorithm, based on the format of the Z curve.
cThe false-negative rate is the fraction of errors on the coding windows.
dThe false-positive rate is the fraction of errors on the non-coding windows.
eThe percentage accuracy is the average of the sensitivity and specificity, i.e.
the average of (1 – false-negative rate) and (1 – false-positive rate).

The periodicity of 3 in the coding regions was observed by
many authors (Silverman and Linsker, 1986; Trifonov, 1987;
Lio et al., 1994; etc.). Silverman and Linsker studied the overall
patterns of periodicity in DNA sequences by the FFT algorithm.
On the contrary, Lio et al. (1994) studied the periodicity of G
+ C in the third codon position. They first transformed the DNA
sequence studied into S and W sequence, where S represents G
or C and W represents A or T. Furthermore, S bases are coded
as 1 and W bases are coded as –1. Accordingly, the DNA se-
quence studied was transformed into a series of 1 and –1. Based
on this format, the periodicity of G + C in the third codon posi-
tion was studied by the correlation function and FFT methods
(Lio et al., 1994). Interestingly enough, the series they used is
exactly the minus z component of the Z curve. Therefore, the
periodicity they observed can be detected by the measure m3 =
Pz(N/3) defined above. On the other hand, Trifonov found a
G-non–G-N pattern in the coding regions, where N represents
any base (Trifonov, 1987). Trifonov suggested that the pattern
may be responsible for a reading frame correcting effect during

the translation process. It was found early that the preferred co-
dons are of the pattern RNY, where R and Y represent the purine
and pyrimidine bases, respectively (Shepherd, 1984). Based on
a graphic technique (Zhang and Zhang, 1991), we have ob-
served that the predominant bases in the first codon position are
purines. This finding is true for E.coli (Zhang and Chou, 1994),
human (Zhang and Chou, 1993), HIV (Chou and Zhang, 1992)
and many other species (data not yet published). Obviously, the
above periodicity of 3 can be detected by the measure m1 =
Px(N/3) defined above. Compared with m1 = Px(N/3) and m3 =
Pz(N/3), m2 = Py(N/3) seems to be less important for detecting
the 3-periodicity in DNA sequences. Because the y component
of the Z curve reflects only the distribution of the bases of
amino/keto type along the sequence, it seems to us that the bases
of amino/keto (M/K) type have less biological significance than
those of purine/pyrimidine (R/Y) and strong H bond/weak H
bond (S/W) types. This is also reflected by the fact that the
magnitude of c2 is generally far less than c1 and c3 (refer to
Table 1). See the discussion below with respect to this point, too.

According to the theory of the Z curve (Zhang and Zhang,
1994; Zhang, 1997), any DNA sequence can be decomposed
into RY, MK and SW sequence, corresponding to the x, y and
z components of the Z curve, respectively. Consequently, vari-
ous 3-periodicity of DNA sequences can be detected simulta-
neously by the coding measure vector m proposed here. The
three components m1, m2 and m3 of the vector m measure the
3-periodicity of bases of the purine/pyrimidine (R/Y), amino/
keto (M/K) and strong H bond/weak H bond (S/W) types, re-
spectively, in the DNA sequence studied. To compare the im-
portance of the three measures m1, m2 and m3 more clearly, we
have performed the following test. Deleting one component
from the 3D vector m each time, we obtain three 2D vectors.
They are denoted by m12 = (m1, m2), m23 = (m2, m3) and m13
= (m1, m3), respectively. Replacing the 3D vector m by the 2D
vectors m12, m23 and m13, respectively, we hope to see what
will happen. The database of the window length 162 bp is used
to test this idea. Repeating exactly the same lengthen-shuffle
procedure and using the standardized evaluation benchmark, we
obtain the percentage accuracy (average of the sensitivity and
specificity) for each case, i.e. for m12, m23 and m13, respective-
ly. The results are listed in Table 3. As we can see, the accuracy
derived from m12 is worse than that from m23, and both are
worse than that from m13, indicating that the 3-periodicity of
bases of the amino/keto (M/K) types is less important than those
of the purine/pyrimidine (R/Y) and strong H bond/weak H bond
(S/W) types. It seems that the 3-periodicity of bases of the strong
H bond/weak H bond (S/W) type is more important than that
of purine/pyrimidine (R/Y) type. Consequently, the order of im-
portance seems to be m3, m1 and m2. Furthermore, the accuracy
of all three 2D vectors is worse than that of the 3D vector m,
indicating that all of m1, m2 and m3 have their respective con-
tribution to the overall recognition accuracy, even including the
component m2.
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Table 3. The percentage accuracy of various measures for window length
162 bpa

Measuresb m12 m23 m13 m

Accuracyc 0.707 0.778 0.830 0.849

aBased on the lengthen-shuffle FFT algorithm.
bThe various measure vectors are defined as m = (m1, m2, m3), m12 = (m1, m2),
m23 = (m2, m3) and m13 = (m1, m3), where m1, m2 and m3 measure the 3-peri-
odicity of RY, MK and SW sequences, respectively. See equation (4).
cAverage of sensitivity and specificity.

Based on the above analysis, the importance of m1 and m3
reminds us to compare the results of the lengthen-shuffle
FFT and the ordinary FFT algorithm schematically by using
a 2D diagram. Let the x and y axes represent m1 and m3, re-
spectively. The distribution of m1 and m3 can be displayed on
the 2D coordinate plane. The databases of the window
lengths 128 and 129 bp are used as examples. Consider the
database of 128 bp first. Accordingly, 1000 coding points
representing 1000 coding fragments (including 500 in the
training set and another 500 in the test set) and 1000 non-cod-
ing points representing 1000 non-coding fragments (500 in
the training set and another 500 in the test set) are distributed
in Figure 1a. The coding points are denoted by open circles
and the non-coding points by filled circles. Then consider the
database of 129 bp. The corresponding distribution is shown
in Figure 1b. Again, the coding points are denoted by open
circles and the non-coding points by filled circles. Note that
the database of 128 bp and the database of 129 bp are almost
identical, as mentioned above. Compare Figure 1a and b. As
we can see, the coding points diverge wider after the
lengthen-shuffle procedure than before, indicating that the
signal of 3-periodicity is amplified. At the same time, the
distribution area of the non-coding points is relatively shrunk
after the lengthen-shuffle procedure, indicating that the noise
is suppressed. Consequently, the overlap between the two
kinds of points is reduced and the ratio of the signal/noise is
raised by the lengthen-shuffle procedure, as also quantitat-
ively reflected by the data listed in Table 2. Besides, we can
find other useful thing from Figure 1a and b. As we can see,
the two kinds of points overlap severely. This is the reason
why we cannot reach a 100% recognition accuracy. It seems
that there is really no obvious 3-periodicity for most of the
non-coding fragments and so too for a number of coding
fragments. In other words, there is no obvious 3-periodicity
for a considerable fraction of coding sequences. The reason
is still not clear. This fact leads to the conclusion that a 100%
recognition accuracy probably could not be reached based
solely on the 3-periodicity detection.

One advantage of the present method is that the coding
potential of six phases in a DNA double helix can be ex-
plored simultaneously. The method proposed here is of the
‘region-coding’ (Fickett and Tung, 1992). The result of our
method has no apparent difference for three phases in a direct

Fig. 1. The graph of m3 versus m1, where m3 and m1 measure the
3-periodicity of SW and RY sequences, respectively. (a) The data of
(m1,m3) are derived from the ordinary FFT algorithm for the window
length 128 bp and (b) from the lengthen-shuffle FFT algorithm for
the window length 129 bp. Note that the database of 128 bp and that
of 129 bp are almost identical. On each figure, there are 1000 coding
points representing 1000 coding fragments (denoted by filled
circles) and 1000 non-coding points representing 1000 non-coding
fragments (denoted by open circles). Compare (a) with (b). Note that
the coding points diverge wider after the lengthen-shuffle procedure
than before, indicating that the signal of 3-periodicity is amplified.
The distribution area of the non-coding points is relatively shrunk
after the lengthen-shuffle procedure, indicating that the noise is
suppressed. Consequently, the overlap between the two kinds of
points is reduced and the ratio of the signal/noise is raised by the
lengthen-shuffle procedure.

strand. It can be shown that the result obtained in the direct
strand can be applied to the complementary strand directly.
Therefore, the present method provides a tool to scan the
double helix quickly to explore the coding potential. Related
to the lengthen-shuffle procedure, the second advantage of
the present method is that the result is quite insensitive to the
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sequencing errors that are substitutions, but it may be very
sensitive to frame-shift sequencing errors. Besides the above
two advantages, there is a third possible advantage. Since the
3-periodicity is generally a coherent feature for most of the
coding DNA sequences, it is expected that the method and
its improved version could be applied to recently discovered
sequences with an accuracy as high as to previously discov-
ered sequences, which are used to derive the Fisher discri-
minant vector c and the threshold t.

For the window length 162 bp, the percentage accuracy of
the lengthen-shuffle FFT algorithm reaches 84.9% (see
Table 2), 4% higher than the corresponding value listed in
Table 2 of Fickett and Tung (1992). Note that besides the
3-periodicity, 2-, 4-, 5-, 6-, 7-, 8- and 9-periodicity were also
considered to obtain the accuracy 80.8% in Table 2  (Fickett
and Tung, 1992). It is hoped that the accuracy of the
lengthen-shuffle FFT algorithm could be improved further
by taking other periodicity into account. The meaning of our
work is not only of theoretical interest, but also for some real-
istic applications. By collaborating on the present algorithm
with other existing algorithms, the accuracy of the joint algo-
rithm would be increased more than without such collabor-
ation. For example, there are some artificial intelligence ap-
proaches to the protein gene-finding problem, e.g. GRAIL
used the neural network to recognize the coding regions or
exons (Mural et al., 1992). By changing the form of the out-
put result of the present algorithm appropriately, we suggest
that the output of the present algorithm may served as an
additional input of the neural network of GRAIL. Since the
3-periodicity is a universal feature for most coding se-
quences, as discussed above, it is hoped that the accuracy of
the neural network approach, such as GRAIL (Mural et al.,
1992), might be increased by collaborating with the method
proposed here. The key challenge in eukaryotic gene finding
is to recognize the splice sites, i.e. to find the boundaries be-
tween introns and exons. We are developing a new algorithm
to tackle this important problem (e.g. Zhang et al., 1998). By
collaborating on such an algorithm, we will develop a new
integrated gene identification package based on the present
algorithm and its improved version.
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