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ABSTRACT OF THE DISCLOSURE

A process for determining the downhole performance
of a pumping oil well by measuring data at the surface.
The size, length and weight of the sucker rod string are
measured and the load and displacement of the polish
rod as functions of time are recorded. From the above
data'it is possible to construct a load versus displacement

curve for the sucker rod string at any selected depth in the
well.

This application is a continuation-in-part of application
Ser. No. 354,236, filed March 24, 1964, now abandoned.

This invention relates to a method for determining the
performance characteristics of a pumping well. More
particularly, the invention is directed to a method of de-
termining downhole conditions of a pumping well from
data which are received, measured and manipulated at
the surface of the well. The invention has specific applica-
tion to the analysis of pumping problems in the operation
of sucker rod pumping systems.

For pumping deep wells, such as oil wells, a common
practice is to employ a series of interconnected rods for
coupling an actuating device at the surface with a pump
at the bottom of the well. This series of rods, generally
referred to as the rod string or sucker rod, has the upper-
most rod extending up through the well casinghead for
connection with an actuating device, such as a pump jack
of the walking beam type, through a coupling device gen-
erally referred to as the rod hanger. The well casinghead
includes means for permitting sliding action of the upper-
most rod which is generally referred to as the “polished
rod.”

In deep wells the long sucker rod has considerable
stretch, distributed mass, etc., and motion at the pump
end may be radically different from that imparted at the
upper end. Through the years, the polished rod dynamom-
eter has provided the principal means for analyzing the
performance of rod pumped wells. The dynamometer is
an instrument which records a curve, usually called a card,
of polished rod load versus displacement. The shape of
this curve reflects the conditions which prevail downhole
in the well. Hopefully the downhole conditions can be de-
duced by visual inspection of the polished rod card. Owing
to the diversity of card shapes, however, it is frequently
impossible to make a diagnosis of downhole conditions
solely on the basis of visual interpretation. In addition to
being highly dependent on the skill of the dynamometer
analyst, the method of visual interpretation only provides
downhole data which are qualitative in nature. As a re-
sult it is frequently necessary to use complicated appa-
ratus and procedures to directly take downhole measure-
ments in order to accurately determine the performance
characteristics at various depth levels within the well.

Broadly, the present invention provides a system for
economically preparing downhole dynagraph cards at all
depth levels, including the pump, from data which are
measured uphole at the polished red. As a result, the sys-
tem provides a rational, quantitative method for deter-
mining downhole conditions which is independent of the
skill and experience of the analyst. It is no longer neces-
sary to guess at downhole operating conditions on the
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basis of recordings taken several thousands of feet above
at the polished rod, or to undertake the expensive and time
consuming operation of running an instrument to the bot-
tom of the well in order to measure such conditions. By
use of the method, it is possible to directly determine the
subsurface conditions from data received at the top of the
well.

The invention will now be described with reference to
the accompanying drawings wherein:

FIGURE 1 is a schematic diagram partially in longitu-
dinal section, showing the general arrangement of appa-
ratus in a system in accordance with the invention;

FIGURE 2 is an enlarged side elevation showing a por-
tion of the apparatus at the rod hanger;

FIGURE 3 is a graphical illustration of polished rod
load versus time;

FIGURE 4 is a graphical illustration of polished rod
displacement versus time;

FIGURE 5 is a curve illustrating the relation between
polished rod speed and a damping factor;

FIGURE 6 is a pump dynagraph card constructed in
accordance with the present invention;

FIGURE 7 is a circuit diagram of an equivalent frans-
mission line corresponding to the sucker rod string shown
in FIGURE 1; and,

FIGURE 8 is an analog computer utilizing the transmis-
sion line of FIGURE 7 for providing a dynagraph card at
any selected depth in the well.

Referring to FIGURE 1, there is shown a well having
the usual well casing 10 extending from the surface to
the bottom thereof. Positioned within the well casing 10
is a production tubing 11 having a pump 12 located at the
lower end. The pump barrel 13 contains a standing valve
14 and a plunger or piston 15 which in turn contains a
traveling valve 16. The plunger 15 is actuated by a jointed
sucker rod 17 that extends from the piston 15 up through
the production tubing to the surface and is connected at
its upper end by a coupling 18 to a polished rod 19 which
extends through a packing joint 20 in the wellhead.

As best shown in FIGURE 2, the upper end of the
polished rod 19 is connected to a hanger bar 23 suspended
from a pumping beam 24 by two wire cables 25. The
hanger bar 23 has a U-shaped slot 26 for receiving the
polished rod 19. A latching gate 27 prevents the polished
rod from moving out of the siot 26. A U-shaped platform
28 is held in place on top of the hanger bar 23 by means
of a clamp 29, A similar clamp 39 is located below the
hanger bar 23. A strain-gauge load cell 33, described in
greater detail hereafter, is shown bonded to the platform
28. An electrical cable 34 leads from the load cell 33 to
a recorder 35, and a taut wire line 36 leads from the
hanger bar 23 to a displacement transducer 37 (see FIG-
URE 1). The displacement transducer 37 is also con-
nected to the recorder 35 by the electrical lead 38.

The strain-gauge load cell 33 is a conventional device
and operates in a manner well known to those in the art.
A particularly suitable load cell is the model 1011 manu-
factured by Lockheed Electronics Company, Los Angeles,
California. When the platform 28 is loaded, it becomes
shorter and fatter due to a combination of axial and
transverse strain. Since the wire of the strain-gauge 28 is
bonded to the platform 28, it is also strained in a similar
fashion. As a result, a current passed through the strain-
gauge wire now has a larger cross section of wire in which
to flow, and the wire is said to have less resistance. As
the hanger bar 23 moves up and down, an electrical sig-
nal which relates strain-gauge resistance to polished rod
load is transmitted from the load cell 33 to the recorder
35 via the electrical cable 34.

The displacement transducer 37 is a conventional unit
such as the Model WR8-150-A also manufactured by
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Tockheed Electronics Company. The displacement trans-
ducer unit 37 is a cable-and-reel driven, infinite resolution
potentiometer that is equipped with a constant tension
(“negator” spring driven) rewind assembly. As the hanger
bar 23 moves up and down, the taut wire line 36 actuates
the reel driven potentiometer and a varying voltage signal
is produced. This signal, which relates voltage to polished
rod displacement, is also transmitted to the recorder 35
via the electrical lead 38.

The recorder 35 is a conventional instrument such as
the Model G=22 Dual Channel Recorder manufactured
by Varian Associates, Inc. The recorder 35 is provided
with a high torque motor which drives a strip chart at the
rate of 60 inches per minute, Data from the strain-gauge
load cell 33 and the displacement transducer 37 are simul-
tancously and independently recorded on the common
chart to produce curves as shown in FIGURES 3 and 4.
FIGURE 3 shows a typical curve of polished rod load
versus time and FIGURE 4 shows a curve illustrating
polished rod displacement versus time.

The key part in the analysis of the pumping system per-
formance is the method for deciphering the force data
which are measured at the polished rod. This interpretive
process is based on a boundary-value problem comprising
a differential equation and a set of boundary conditions.

The sucker rod can be thought of as a transmission or
communication line, the behavior of which is described
by the viscously damped wave equation:

bzu(x,t)__azbzu(x,t)__ du(ax,f)
o T YT om T o

(1)

where:

a=yvelocity of sound in steel in feet/second;

c=damping coefficient, 1/second;

t=time in seconds;

x=distance of a point on the unrestrained rod measured
from the polished rod in feet; and,

u(x,ty==displacement from the equilibrium position of
the sucker rod in feet.

In reality, damping in a sucker rod system is a compli-
cated mixture of many effects. The viscous damping law
postulated in Equation 1 lumps all of these damping
effects into an equivalent viscous damping term. The cri-
terion of equivalence is that the equivalent force removes
from the system as much energy per cycle as that removed
by the real damping forces.

In keeping with this viscous damping postulate, some
field damping measurements have been made. FIGURE
5 shows an idealization of these measurements phrased
in terms of a dimensionless damping constant, . The
damping coefficient, ¢, used in our analysis can be deter-
mined from FIGURE 5 and the relation:

__may

=3

(2)
where:
y=dimensionless damping factor; and,

L=x;+4xo+. . .+xp=combined length of rods (depth
of pump), in feet.

An alternate way of estimating the damping coefficient
is by means of Equation 2 and the relation:

=4.42><IO‘QL(Pth~H/Lp)T2
v (A, +Agret+ - - - A1) 82

(3)

where:

PRAp=polished rod horsepower, in horsepower;

Hiip=pump hydraulic horsepower, in horsepower;

T=period of pumping cycle, in seconds;

Al,.Az, e Ap=area of each rod size in the combina-
tion string in square inches;
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Xy, X3, + . + Xpm=length of each rod interval in the com:
bination string in feet; and,
S=polished rod stroke, in feet.

Equation 3 is derived by assuming that the viscous damp-
ing losses occur as though the integrated average velocity
of the sucker rod were equivalent to the root mean square
velocity of the polished rod in simple harmonic motion.
Either of these two methods for estimating the damping
factor may prove suitable. Investigations have shown that
the wave Equation 1 including the viscous damping
approximation, gives good practical results when applied
to sucker rod problems.

Information regarding downhole operating conditions
is transmitted through the sucker rod in the form of strain
waves which travel at about 16,000 feet per second. This
information is monitored at the polished rod, preferably
in the form of curves of polished rod load and displace-
ment versus time as shown respectively in FIGURES 3
and 4. The boundary conditions are then formulated with
this measured information or data. Because Equation 1
contains no gravity term, the rod weight must be deducted
from the polished rod load. This yields a dynamic load-
time curve which, together with the displacement time
curve, constitutes the boundary condition data required
for a steady-state solution. The boundary conditions are
formulated analytically by approximating these curves
with a truncated Fourier series of the type:

D(wt)=L(wt)—W,=‘f—;+Z oa €OS Nl 7, SiN Nwl
n=1
1)
and
U(wt)=39-|—2 v, €OS nwt-}5, sin nwt
2 i3 (5)
where:

w=angular velocity in radians per second;

D(wt) =dynamic polished rod load function in pounds;
1(wt)=total polished rod load function in pounds;
Wi=rod weight in fluid in pounds; and,
U(wt)=polished rod displacement function in feet.

These are the force-time and displacement-time functions.

The Fourier coefficients ¢, 7, » and § shown above are
evaluated from the measured data by use of harmonic
analysis as set cut below. To apply the method, it is nec-
essary to evaluate Fourier coefficients associated with
functions defined only in graphical form. Since no ex-
plicit equations are available for these functions, evalua-
tion of the coeflicients by the classical method of integra-
tion is not possible. The following is a simple numerical
procedure for approximating these coefficients:

Consider the dynamic load-time function D(wt). This
function can be approximated by a truncated Fourier
series, provided that the following integrals are used to
evaluate the coefficients:

2
wn:%ﬁ) " D(at) cos natdt, n=0,1,2,..., 7%

27
lrn=7—‘:ﬁ) D(wt) sin notdt, n=1,2,...,n

follows. Let

These integrals can be approximated as
0=uwt, and obtain, for the ;oy,

1 (2= —
IU":;J;) D(8) cos n9ds, n=0,1,2,..., 0

For the numerical integration, consider ¢ as a discrete
variable

_ 27p

="%"

9=0,1,2, ..., K
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Adopt the shorter notation

- etc., and use a trapezoid rule to write

1|:ch cos [M]-I—Dl cos [27“'"1]
10 = K K
7r 5 +
D, cos [zngl]—}-Dg oS [27}7{".2
5 ot

Dx- cos [@—’r(—g‘—l)]-pp,; cos (2mr)12_7,
3 | K

Collecting like terms we have
(o Z[D (53] O_I_D1 cos [2n1r 1]+D2 cos [2n7r 2]+

Dx cos (2717r)].
2

F+

For a periodic function, Dy=Dg. Also, cos 0==cos 2nm;
hence,

10‘n~ :n 0 1,

ZD cos 2

The other Fourler coefficients are obtained in like fashion.

Thus,
7 ~—2K ip sn[2-—"5”:”], n=1,2,3--+%
17n = D y Ly 9y 3’

X
- > U cos [3;’—{’157-’], n=0,1,2-++,7
p——_

2 X . [2nxp
SHzK EUD sm[—K—l—]’ n=1, 2, .

The accuracy of the numerical integration described
above depends on the number of ordinates that are taken.
Determination of the optimum number of ordinates is
_difficult, but a X of 75 will probably suffice for the calcu-
lation of the force coefficients jo, and ;7. Fewer ordinates
are required for the displacement coefficients », and 18n,
because the displacement function U(wt) is quite smooth.
Perhaps a K; of 35 is sufficient.

The smooth nature of the displacement function also
permits the use of fewer displacement coefficients. Per-
haps a maximum of four coefficients is required; there-

fore, the remaining coefficients yvs, 176, .

188, . . . » 194 may be neglected.

To solve the problem set forth by Equations 1, 2 and
3, let z(x,f) be a complex variable. The wave Equation
1 then becomes, in complex form,

%z(z, 1) ,0%(x, ) bz(m, £)
o or ot (6)
Employing separation of variables, we seek product solu-
tions of the form
z2(x,1)=X(x)T(t)
where X(x) and T(t) are, respectively, functions of x and

t alone. Differentiation and substitution into Equation 6
yields

. 5 17 and 135,

T () ,cT'() X' (%)
aT () " a?T() X(x)
Each side of the above equation contains only one of the
independent variables; hence
() el (t) X' (z)
T (t) ' a?T(t) X(z)

— )\DZ

10

—

5

Do

0

35

45

55

65

70

5

6

where Ay, is a separation constant. This separation process
splits the partial differential equation into two ordinary
differential equations

T () 4T’ (8) —\2a2T (2) =0 Q)

X7 (x) +22X (x) =0 (8)

Products of solutions to Equations 7 and 8 satisfy Equa-
tion 6. Anticipating Fourier series expansions in z, we seek
periodic solutions to Equation 7 of the type

T(2):elnet
Differentiation and substitution into Equation 7 yields
—n2w2einet +ichw einwt_l_ )\nzazemwtzo
Since ein“t-L0, then

and

N2 —icnw

2 =
A z

Using methods in complex variables, we find

>\=i[;3§‘/1+‘/1+[ﬁ% "+
ey []]

nw
Let us choose the positive root, and define

av2

Ap=—0p+ify )
where
1 <P
] (10)
and
=N ¢
s=5V V] (11)

Equation 8 is the harmonic equation which is satisfied by
linear combinations of

X(x):sin Apx, cos Apx

Special treatment is required for the case when n=0.
In this instance Equations 7 and 8 reduce to

T () +cT' (£)=0
X" (x)=0
Solutions to these equations which are of interest are
T(8):¢
X(x):x, &

where £ 7, and ¢ are real constants. This completes the
preliminary work. Our choice of product solutions is
governed by the boundary conditions. Take

2(2, ) =Ent £+ (@0 sin Mo+ @a cos Agz)einet
n=1

(12)
where &, and @, are complex constants
Bp=—Fkn—ipy
®n=wn—idy

By the proper choice of these constants, the boundary
conditions will be satisfied. As a solution to Equation 1,
choose

u(xt)y=Relz(x1)] (13)

therefore, boundary condition 4 can be satisfied if
_ 0z(0, t)
D(wt)—Re[EA———ax

We have
ai(axt’—t)=£71+2(cbn)\u cos knx—@nkn sin )\nx)einut
n=l1
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hence,

D(wt) EB[E"]‘*"Z (kn‘xu"}_ﬂnﬁn) cos ﬂwt+

n=1

(fuBa— paon) sin nwt:l

It is convenient to define new constants at this point. Take

on=EA (#pon+pnbn), 7=0, 1, 2, . . . (14)
Tn=EA (kpnBn—~ pnon)s =1, 2, . . . (15)
do>=2EAfn (16)
From Equations 14 and 15, we deduce

_ ontnt7aba .
K= FA(ad 8" 0 B D )

0pfu— Tul .
= FA(aitpd "2 (18)

In order that boundary Conditions 4 be satisfied, the
oy and 7, must be evaluated with the Fourier-Euler in
integral formulas

2
an=°—;ﬁ) D(wt) cos nwidt, n=0,1,2, - - «

(19)
=@ [* D(ut) sin neidt, n=1, 2
= (wt) sin notdt, n=1, 2, « -+ - (20)
Condition 5 requires that
U(wt)=Re[z(0,2)1
hence,
U(wt)=£§—|—i vy COS Nl + 8, sin nwt
n=}
If
w [ 2r _
= J; U(wt) cos nwidt, n=0, 1, 2, (21)
=" fzw U(wt) sin nwidt, n=1,2, « -
w Jo
(22)
and
vo=28¢ (23)

then Condition 5 will be satisfied. This concludes the pro-
cedure for evaluating the separation constants.

The formula for the displacement #(x,t) is determined
by using Equation 13 and the complex identities

sin Apx=—sin eyx cosh fux-+i cos ayx sinh Spx
COS ApX==C0s anx cosh fpx4isin ayx sinh gpx
and
ent=cos nwi--i sin Het

Using these identities, we isolate the real part of z(x,?),
obtaining

V°—I-ZO () cos nwt-+Pa(z) sin nwt
(24)

u(z, t)= 2EAX+

where
O (%) = (#y cosh Bpx+38, sinh Bpx) sin epx

- (uy sinh Brx-t-v, cosh Byx) cos apx  (25)
and
Pp(x)=(xy sinh Bnx-48, cosh Brx) €Os anx

—(uy cosh Bux—+»y, Sinh Bpx) sin axx  (26)
The force F(x,t) can be calculated by using Equation 24
and Hooke's law

Pz, )= EAau('Z )
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We have
F(z, t)=EA4 2EA () cos nwi+ P, sin not
(27)
where

0,/ (z)= [5—1‘4 sinh Buz -+ (8.8.—vuan) cosh th] sin e,z

+8,a,) sinh ﬁnx] coS a,x

an
EA (28)
d

an
' | ™

[—lg—;l sinh B, +-v4Ba+8aca) cosh ﬁnx] sin

2+ (8,80 —vnea) sinh ﬁnx] COS a,T—

(29)
This completes the formal solution.

In practice, rod strings often involve several rod sizes.
This requires that the solution just derived be extended
slightly. It is convenient to adopt a more general notation,
as follows. Let A;, Ay, Ag, . .., Ay be the areas and
X1, X9, X3, « « . » Xp D€ the corresponding lengths of the
various rod sections taken in order starting from the sur-
face. Extend the notation for the Fourier coefficients to
include two subscripts as jon, y7n, j¥n, 3n, Where the right
subscript denotes the order of the coefficient, as always, and
the left subscript denotes the section of the rod string with
which the coefficient is associated. The coefficients oy,
17ns 1¥ns 190, are understood to pertain to polished rod data
(the polished rod is considered as part of the first rod
section). Also extend the notation for the functions given
in Equations 25, 26, 28, and 29, ie., jO,(x), jPp(x),
;On’(x), and P, (x). Here the left subscript denotes that
these functions involve the jth set of Fourier coefficients.

For simplicity, consider a two-way taper. The displace-
ment at the bottom of the first section is given by the
generalized form of Equation 24 as

u(zy, t)=x53 1+'v +2 104 (z:) €08 nwl--1 Py (z;) sin nwt

2EA
The force in the rod at that point is

o 100
F(.’U], t) ——EA][2EA1
At the junction between the two rod sections, the dis-
placements and forces are continuous. We thus formulate
new boundary conditions (parallel to Equations 4 and 5,
where x; is considered as the new origin) preparatory to
computing the displacements and forces in the second
rod interval. These new boundary conditions essentially
involve a new set of Fourier coefficients. From con-
tinuity considerations, the new displacement coefficients
become

+ 2104 (1) cos nwt+ Py’ (1) sin nwt]
u=}

10621
EA,
wa=10 n(xl)
200=1P ()
Similarly, the new force coefficients become

+ 1o

Wo™=

200==109
200=Ed; 10’5 (x1)
omn=EA; 1P’ (%)

Finally, the displacement and load at the pump can be
computed from

200

u(xh t) '_2EA 2+2v0+

> 90a(x3) €08 nowt+Po(2;) sin not
n=1
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and

F(z t) =EA2[2;;:4 +

n—=1

This procedure suggests recursion formulas for strings
with any number of rod sizes. These formulas are

=2 0
+17a=0a(;) (31)
s+180= 3P (1) (32)
100700 (33)
ir10a=E A4; ;0"(%;) (34)
itmatEA; i P(x;) (35)

With j=1, 2, ..., m—1, where m is the number of
rod sizes comprising the sucker rod string.

The solution to the boundary-value problem given
above is fairly lengthy; thus, it is desirable to assemble
in one place all of the pertinent formulas. The following
is essentially a step-by-step procedure to be followed in
performing this analysis:

Step 1. Using the measured data, construct the dynamic
load function

D(wt)=L(wt)—W, (36)

Calculate the Fourier coefficients associated with the
measured data from

27 by
Nn:% . D(wt) cos nwt df, n=0,1,2,. .., %
2 .
Tn:ﬁ) D(wt)sin nwt df,n=1, 2, . EYp)

w (2 -
wa=r) "~ U(wt) cos nat dty n=0,1,2,..., 0
w ((2r . e
wa==) = Ulat) sin not di, n=1,2, ...,

The polished rod load and displacement functions will
be available only in graphical form; therefore, the in-
tegrals shown above cannot be evaluated in the classical
manner. Many numerical methods, such as harmonic
analysis methods, for approximating these integrals are
available. A simplified harmonic analysis routine has
previously been set out. The number of terms in the
truncated Fourier series is determined by . If we increase
7, the accuracy of the results is increased, but, at the
same time, the computation labor is increased, This re-
quires a compromise on the size of n. An 7 of, say, 10
will probably suffice in most cases.

Step. 2. Estimate the damping coefficient ¢. Methods
for estimating ¢ have been set out, supra. Calculate

27
W=7

T
= c?
e

o 19000 F1708n

4" B A (anl 162

(38)

(39)

w 5
> 120" u(@2) cos nwi-,P’ (%) sin nwt]

75

10

(40)
= 19080 —1Tn0tn
4" B (o 167
10a(x1) = (10 COSI} BnX1-4+18y sinh Baxy) sin en¥y
+(1q sinth Bpxy 19y cosh Bp;) cos apx;  (41)

1Py (%1) = (1 Sinh By +13, Cosh Bnxy) COS oanxy
— (140 cosh Byx1 417, sinh Bx;) sin apxy

10 10 '(xl) =
11772 sinh 8.7+ (18a8n— waon) cOsh ﬁnxl] sin a2+
15 1‘_17?11 cosh Buzi+ (waBn-18aea) sinh B,,xl] €S a,T;
(42)
1Py’ (.’171) =
20 El,":";l cosh 8.1+ (1808 —1wnow) sinh ;3,,:1:1] COS oy~
éi;l sinh anl-l_ (an.Bn+13nan) cosh an] sin oy
25 where n=1,2, .. ., n.

If the rod string is untapered, calculate the pump dis-
placement and load from

30 10671

u(mht) —ZEA

+1V°-I-Z‘0 (21) 08 et -+ 1Py () sin nwt
(43)
F(xl:t) =
35

EA, [2'”" -|-Z;0 '(z1) cos nwt+ P, (al) sin nwt]

If the rod string is tapered, proceed to step 3.

40 Step 3. Calculate recursively the quantities

i%%j

Vo=
T R4 T
+190=30u(z;)

45 iPa(z;)

i+180 ==

(44)

100~
itron=EA4; ;0" (x;)

i+ =EA;;P'y(7;)

i%o

50

11900 T +170Ba
E""‘lj'i'l(o‘n2 + an)

j+1kn=

55 (45)

i+00nfn 1 i+1Tn%n

EA,|+1(an2+BnZ)

14100 (x31) == (nq 165 COSh Xy 1+ 3410, sinh
0 BnXj11) sin anXj 1+ (j4160 sinh
BuXy1-t3417 €OSh BrXyy1) COS anxyyg
341Pn (xg41) = (100 sinh By 1 +y418n (46)
cosh By%;.1) €OS anXjyy
— (54180 COSh B34 1434170 sinh By 1) sin ankyyg

j+17) -
;|+10 n(x,|+1) [ . = Slnh .ani+1+

J+H1Mn =

65

70 (5+10aBa—j+17nca) COSh an,~+1] sin @41+
1:12% cosh B4+

(5+170Pati+18000) sinh 82541 cOS an-’cj+1]
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(47)

i+17n

. ! =] ==
,|+1P n(er [EA;—H

(j+18aBa—j+1vna) sinh 5nfvi+1:] COS ayTi+1—

cosh Bu7j+1+

i+10n

EAH-I sinh ﬁnxi'l'l'{—

(i+l”n6n+i+15nan) cosh ﬁuxi-H] sin anli+1
where j=1,2, . . ., m—1l,andn=1,2, .. ,n

The pump displacement and load can then be calculated
from

m%o mPg
u(xmy t) —mxnl+ 2
m
+ > 1000 (@m) €05 nwt+nPy(Zn) sin not
n=1
(48)
Iz, t)=
iy
EA"’I:2§iim+n_§mo’" (#m) €08 nwt+ mP  (%n) sin nwt]
Concisely stated, solutions to the equation
Q% (x,t) _a,bi’u (z,2) _Cbu(x,t)
o Ox2 ot

are obtained which, when evaluated at the surface, satisfy
the measured conditions of the load-time curve and the
displacement-time curve (charted on the recorder 35)
represented by the equations

T
D(at) =L(wt) = W=+ > Jou 05 not-+r sin
n=1
and
v Iy
U(wt) =§"+Zun cos nwt+4, sin nwt
n=1

respectively. These solutions can then be used to determine
the load and displacement at any depth in the well, par-
ticularly at the pump, by using the basic diagnostic equa-
tions

n
F(zt) =EBA| o2 - S570",(2) cos nwt-+ P’ (z) sin net
2EA "
(49)
and
_ GT Vo i .
U(a:,t)—m-l——z——l—éOn(x) cos nwt+Py(z) sin net

(50)
The Equations 49 and 50 give force and displacement at
arbitrary depth and can be used to calculate subsurface
dynamometer cards such as the one shown in FIGURE 6.
The above equations 49 and 50 can be solved by pro-
graming a digital computer and then supplying the well
test data in the proper form. For example, a standard
digital computer can be programed and the test data
transcribed to punched cards or tapes. The test data can
be transcribed by measuring the polished rod load in
FIGURE 3 at various times to obtain a plurality of prints.
Normally 60 or more points per complete cycle will pro-
vide sufficient points. A similar number of points are ob-
tained for the polished rod displacement cure of FIGURE
4. In addition, a set of punched cards are prepared for
the fixed data such as weight of polished rod, pump period,
length of various rod segments and sizes and the unit
weight of the various rod segments.
The exact program for the computer can be developed
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by those skilled in the art and the exact form of the pro-
gram will vary from worker to worker. The computer will
supply a plurality of ordinate points that can be used to
plot a dynamometer card for a selected depth. Normally
the selected depth will be at the junction between two
different sections of rod or at level of the pump.

An analog computer can also be used to provide a
solution to Equations 49 and 50. An inspection of Equa-
tion 1 shows that it has the same form as the equation
of an electrical transmission line

02Q 0Q 1 02Q

@ T =0 %
wherein L, R and C=inductance, resistance and capac-
itance, respectively, Q=charge in coulombs, x=—distance
in feet, and z=time in seconds. This equation can be simu-
lated by the circuit of FIGURE 7 with magnitude of
the capacitance, resistance and inductance being chosen to
correspond to the features of the mechanical system.

The equivalent circuit of FIGURE 7 can be incorpo-
rated in a special analog computer or solved by a general
purpose computer. A specialized computer is shown in
block diagram form in FIGURE 8. The computer of
FIGURE 8 can be connected directly to the load cells
and displacement transducers shown in FIGURES 1 and
2. The computer will then supply a dynagraph card for
any desired level in the system. The level of the dynagraph
card can be selected by varying the current supplied to
the equivalent transmission line shown in FIGURE 7.

The circuit of FIGURE 8 uses a recorder 40 to record
the load and displacement signals generated by the trans-
ducers of FIGURES 1 and 2. The recorder can be a
magnetic tape recorder with provisions for playing back
the recorded signals at approximately 100 times the re-
cording speed. It is preferred that the playback speed be
greater to reduce the size of the equivalent transmission
line of FIGURE 7 and improve the performance of
the system, The recorder supplies the two signals to a
signal generator 41 that adjusts the current flow to ob-
tain the dynagraph for the desired level, The signal gen-
erator contains the necessary operational amplifiers to
both shape the signals and sum the signals.

The transmission line 42 is shown in detail in FIGURE
7 and consists of resistance, inductance and capacitance.
The exact size of the elements will depend upon the
physical characteristics of the sucker rod string and its
length, In practice it has been possible to design a single
equivalent electrical circuit to accept the following range
of values for a sucker rod string length of 2000 to 15,000
feet, a diameter of 72 to 1 inch and up to 20 subdivisions.

The transmission line 42 is connected to the recorder
43 that includes an oscilloscope for displaying the de-
veloped signal. Of course, the recorder 43 also includes
circuits for adjusting the signals and adding fixed con-
stants such as the weight of the sucker rod string. The
signal displayed on the oscilloscope will be in the form
of a dynagraph card for the selected depth. The signal
on the oscilloscope can be photographed to obtain a
permanent record of the dynagraph card.

To demonstrate the type of information generated with

this technique, the data shown in FIGURES 3 and 4 have
been analyzed.
These data pertain to a well being produced with a 120-
inch stroke unit pumping at 12 strokes per minute from
a depth of 7500 feet. The rod string consists of 1425
feet of 1-inch rods, 1775 feet of 7-inch rods, and 4300
feet of %-inch rods.

As indicated by the equations, the forces and dis-
placements in the solution are given as functions of time.
When force is plotted versus displacement for a given
time, dynagraph cards can be constructed for all posi-
tions in the sucker rod string, including the pump, FIG-
URE 6 shows a closed periphery pump dynagraph card
constructed from the example data. Significant quantita-
tive information can be obtained from this card, such as
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differential fluid load, gross pump stroke, effective volu-
metric displacement, and volmetric efficiency. Moreover,
in the event of system malfunction, the shape of the card is
indicative of the nature of the trouble. The interpretation
of pump dynagraph cards is well known to those skilled
in the art and will not be discussed since it is not the
subject of this invention.

The plotted subsurface cards can also be used to detect
tubing leaks, detect defective tubing anchors, calculate
intermediate rod stresses, detect gas separation problems,
calculate pump intake pressure and detect leaky pumps,
to name a few applications. Thus, it can be seen that con-
siderable quantitative information can be gained by using
the hereindescribed method to plot subsurface dynamom-
eter cards.

I claim as my invention:

1. A method of determining the performance char-
acteristics of a pumping well wherein a reciprocating pump
is located below the fluid level of the well and has a
piston therein with a sucker rod string extending upward
to a polished rod which is connected to a reciprocating
prime mover means at the top of the well, said method
comprising:

(a) measuring the area of each rod size in the sucker
rod string, the combined length of the rods in the
sucker rod string, the weight of the sucker rods and
the pump, and the weight of that portion of the
sucker rod hanging in said fluid;

(b) actuating said sucker rod string to reciprocate the
pump, whereby said pump piston generates acoustic
waves which move along the sucker rod;

(¢) measuring and recording the load and displacement
of the polished rod as functions of time;

(d) selecting a depth within the well to be investigated
and combining the corresponding components of the
size and weight data measured in step (a) with the
load and displacement versus time data measured in
step (c) as the boundary conditions for a wave
equation which describes the linear vibrations in a
long slender rod, to determine the corresponding
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forces and displacements in the sucker-rod stream
at the selected depth; and

(e) plotting a curve of the load versus displacement

for the selected depth.

2. A method of determining the performance char-
acteristics of a pumping well as set forth in claim 1 where-
in said curve is plotted for any desired depth level in
the well by utilizing the relationships of load versus time
and displacement versus time as expressed respectively by
the equations:

a0

n
F(xzt) =EA|:m+1§ 0./ (z) cos nwt+ P,/ (z) sin nwt]

and

ool

it
) .
u{xt) =5% +—2+ nzzl;ou(x) cos nwt -+ P,(z) sin nawt.

3. The method of claim 1 wherein steps (d) and (e)
comprise selecting a depth within the well to be investi-
gated and combining the corresponding components of
the size and weight data measured in step (a) with the
load and displacement versus time data measured in
step (c) as the boundary conditions for a wave equation
which describes the liner vibrations in a long slender
rod to determine the corresponding forces and displace-
ments in the sucker rod string at the selected depth to
obtain a plurality of coordinates of load versus displace-

' ment; and plotting the load versus displacement coordi-

nates to obtain a dynagraph card for the selected depth.
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