. E4 ~9 M! u. W9 p 分布参数和集中参数模型 分布参数模型是用各类偏微分方程描述系统的动态特性,而集中参数模型是用线性或非线性常微分方程来描述系统的动态特性。在许多情况下,分布参数模型借助于空间离散化的方法,可简化为复杂程度较低的集中参数模型。 ' e) D6 e6 D1 F7 G
+ w0 g- j; p! ~- X4 G- r 连续时间和离散时间模型 模型中的时间变量是在一定区间内变化的模型称为连续时间模型,上述各类用微分方程描述的模型都是连续时间模型。在处理集中参数模型时,也可以将时间变量离散化,所获得的模型称为离散时间模型。离散时间模型是用差分方程描述的。 & j& ?0 S1 o( y4 N' e8 e# p7 f9 ?; Z
随机性和确定性模型 随机性模型中变量之间关系是以统计值或概率分布的形式给出的,而在确定性模型中变量间的关系是确定的。 7 M; m- C4 |6 W" |! _# G9 f
5 g2 A$ v2 o$ e" b% W* P! A
参数与非参数模型 用代数方程、微分方程、微分方程组以及传递函数等描述的模型都是参数模型。建立参数模型就在于确定已知模型结构中的各个参数。通过理论分析总是得出参数模型。非参数模型是直接或间接地从实际系统的实验分析中得到的响应,例如通过实验记录到的系统脉冲响应或阶跃响应就是非参数模型。运用各种系统辨识的方法,可由非参数模型得到参数模型。如果实验前可以决定系统的结构,则通过实验辨识可以直接得到参数模型。 7 W* h W8 A0 ?# I
% u1 p2 I7 u) E' K1 E 线性和非线性模型 线性模型中各量之间的关系是线性的,可以应用叠加原理,即几个不同的输入量同时作用于系统的响应,等于几个输入量单独作用的响应之和。线性模型简单,应用广泛。非线性模型中各量之间的关系不是线性的,不满足叠加原理。在允许的情况下,非线性模型往往可以线性化为线性模型,方法是把非线性模型在工作点邻域内展成泰勒级数,保留一阶项,略去高阶项,就可得到近似的线性模型。