数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 5129|回复: 6

求指导:维修任务安排问题

  [复制链接]
发表于 2012-5-16 10:58:25 | 显示全部楼层 |阅读模式
某个热水器维修站承接多个品牌的热水器维修任务,负责附图所示地区的维修事
项。图中黑线表示道路。该地区共有 70 个不同的小区,为简单起见,假设每个小区都
是长方形区域,边长也仅有两种规格:2000米、1000 米,如小区1 是边长 1000 米的正
方形区域;小区 3 是 2000 米×1000 米的长方形区域;小区 9 是边长为 2000 米的正方
形区域。也假设每个小区的出入口仅有一个,并且出入口均位于小区四边中某个边的中
点处。进出口的位置见附表 1。维修站位于 65 号小区的左上角。维修员的出行方式为
电瓶车,平均速度为 25公里/小时。
维修站接待保修、维修员上门维修的流程如下:保修电话记录每个报修信息,生成
任务清单。每个维修员早 8:00到维修站领取其所负责区域的维修单,下午6:00 之前
必须将当天已经完成的清单与未完成的清单交到维修站。热水器的报修事项相对稳定,
假设一共有 A、B、C、D、E、F、G、H 八类,各类事项的平均维修时间数据如下表。  
事项         A   B    C    D    E    F    G    H
维修时间    10  20  15  30  20  15  35  20
(分钟)

请按照所给信息,建立数学模型,回答下列问题。
(1)假设每个小区的报修客户住处随机分布在小区内。建立模型说明在一个规格
为a千米×b千米小区内维修所需总时间与小区大小、报修项目之间的关系。
(2)假设维修员 Z负责小区 1---小区 16 的所有维修任务。某天接到的报修单见附
表 2。该维修员应当如何安排,使得一天内能完成尽可能多的维修任务。
(3)客户在报修时往往会对维修人员上门时间有要求,假设可能的时间要求分为
三个时间段:上午(8:00-11:00)、午饭时间(11:00-13:00)、下午时间(13:00-18:
00)。在上一题中,每项报修要求时间见附表 3。该维修员应当如何安排,使得一天内
能完成最多的维修任务(维修人员的午饭时间可以在 11:00-13:00内灵活安排,时间
约为 30 分钟)。
(4)维修站承诺所有报修事项能在报修后 3 天内上门修理。假设今天是 2012年 5
月 4 日,维修站现在仍没有完成的维修任务以及报修时间如附表 4。按照当前任务,维
修站至少需要几名维修员,能够在承诺的时间内完成所有修理工作。
(5)客户在报修时只说明一项维修事项,而维修人员上门时往往发现维修项目并
不只是所报修的一项,历史修理情况统计数据见附表 5。请分析此情况对(4)题的影
响。

联系邮箱:wfyss6@gmail.com
请提供点思路,不胜感激~

题目附件.rar

12.5 KB, 下载次数: 13508

发表于 2012-5-16 21:35:19 | 显示全部楼层
一问一问来吧。
只考虑主要因素的话,是个旅行商(TSP)问题。由于维修时间是不能更改的,所以,路上的时间越少,实际用于维修的时间就越长。
最后一问维修任务也不是事先确定的,这个就只能算概率了。
 楼主| 发表于 2012-5-18 13:14:48 | 显示全部楼层
回复 2# amao


    谢谢你,是旅行商问题哈?好的
发表于 2012-5-18 20:43:00 | 显示全部楼层
第一问是旅行商,但是后面与概率有关,就不那么简单了。
这是哪个学校的题目?


回复 3# xiaoyaosun
发表于 2012-5-18 21:05:30 | 显示全部楼层
回复 4# amao


    第一问不用概率吗?第二问不是才是旅行商问题吗
发表于 2012-5-18 21:23:31 | 显示全部楼层
第一问说是随机分布,没有别的信息的情况下,先当成均匀分布。
第二问也是TSP。

回复  amao


    第一问不用概率吗?第二问不是才是旅行商问题吗
dianxiaoer 发表于 2012-5-18 21:05
发表于 2012-5-18 21:28:22 | 显示全部楼层
回复 6# amao


    可是这个均匀分布的概率该怎么算呢,把客户当成小区内的任意一个点吗?这样概率怎么算呢?求灵感啊!
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2025-5-17 22:55 , Processed in 0.058235 second(s), 22 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表