数模论坛

 找回密码
 注-册-帐-号
搜索
热搜: 活动 交友 discuz
查看: 6370|回复: 4

数学专业英语-Continuous Functions of One Real Variable

[复制链接]
发表于 2004-5-6 09:26:38 | 显示全部楼层 |阅读模式
< ><FONT face="Times New Roman"> <FONT size=3>This lesson deals with the concept of continuity, one of the most important and also one of the most fascinating ideas in all of mathematics. Before we give a preeise technical definition of continuity, we shall briefly discuss the concept in an informal and intuitive way to give the reader a feeling for its meaning.</FONT></FONT></P>
< ><FONT face="Times New Roman"><FONT size=3>   Roughly speaking the situation is this: Suppose a function <I>f </I>has the value <I>f ( p )</I> at a certain point <I>p</I>. Then <I>f</I> is said to be continuous at p if at every nearby point <I>x</I> the function value <I>f ( x )</I> is close to <I>f ( p )</I>. Another way of putting it is as follows: If we let <I>x</I> move toward <I>p</I>, we want the corresponding function value <I>f ( x )</I> to become arbitrarily close to <I>f ( p )</I>, regardless of the manner in which <I>x </I>approaches <I>p</I>. We do not want sudden jumps in the values of a continuous function.</FONT></FONT></P>
< ><FONT face="Times New Roman"><FONT size=3>  Consider the graph of the function <I>f</I> defined by the equation <I>f  ( x ) = x –[ x ]</I>, where <I>[ x ] </I>denotes the greatest integer &lt; <I>x</I> . At each integer we have what is known ad a jump discontinuity. For example, <I>f ( 2 ) </I>= 0 ,but as x approaches 2 from the left, <I>f ( x )</I> approaches the value 1, which is not equal to <I>f ( 2 )</I>.Therefore we have a discontinuity at 2. Note that <I>f ( x )</I> does approach <I>f ( 2 )</I> if we let <I>x</I> approach 2 from the right, but this by itself is not enough to establish continuity at 2. In case like this, the function is called continuous from the right at 2 and discontinuous from the left at 2. Continuity at a point requires both continuity from the left and from the right.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  In the early development of calculus almost all functions that were dealt with were continuous and there was no real need at that time for a penetrating look into the exact meaning of continuity. It was not until late in the 18<SUP>th</SUP> century that discontinuous functions began appearing in connection with various kinds of physical problems. In particular, the work of J.B.J. Fourier(1758-1830) on the theory of heat forced mathematicians the early 19<SUP>th</SUP> century to examine more carefully the exact meaning of the word “continuity”.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  A satisfactory mathematical definition of continuity, expressed entirely in terms of properties of the real number system, was first formulated in 1821 by the French mathematician, Augustin-Louis Cauchy (1789-1857). His definition, which is still used today, is most easily explained in terms of the limit concept to which we turn now.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  The definition of the limit of a function.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  Let <I>f</I> be a function defined in some open interval containing a point <I>p</I>, although we do not insist that f be defined at the point <I>p</I> itself. Let <I>A</I> be a real number.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  The equation</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>          </FONT><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></v:shapetype><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT face="Times New Roman" size=3> </FONT><I><FONT face="Times New Roman"><FONT size=3>f ( x ) = A<p></p></FONT></FONT></I></P>
<P ><FONT face="Times New Roman" size=3>is read “The limit of <I>f ( x )</I> , as <I>x</I> approached <I>p</I>, is equal to <I>A</I>”, or “<I>f ( x )</I> approached <I>A</I> as <I>x </I>approached <I>p</I>.” It is also written without the limit symbol, as follows:</FONT></P>
<P ><FONT size=3><I><FONT face="Times New Roman">f ( x )</FONT></I><I>→<FONT face="Times New Roman"> A</FONT></I><FONT face="Times New Roman"> as <I>x </I></FONT><I>→<FONT face="Times New Roman"> p<p></p></FONT></I></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  This symbolism is intended to convey the idea that we can make <I>f ( x )</I> as close to <I>A</I> as we please, provided we choose <I>x </I>sufficiently close to <I>p</I>.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  Our first task is to explain the meaning of these symbols entirely in terms of real numbers. We shall do this in two stages. First we introduce the concept of a neighborhood of a point, the we define limits in terms of neighborhoods.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  Definition of neighborhood of a point.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  Any open interval containing a point p as its midpoint is called a neighborhood of <I>p</I>.</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">  NOTATION. We denote neighborhoods by <I>N ( p ), N<SUB>1</SUB> ( p ), N<SUB>2</SUB> ( p )</I> etc. Since a neighborhood <I>N</I> <I>( p )</I> is an open interval symmetric about <I>p</I>, it consists of all real x satisfying <I>p-r &lt; x &lt; p+r</I> for some <I>r &gt; 0</I>. The positive number <I>r</I> is called the radius of the neighborhood. We designate <I>N ( p )</I> by <I>N ( p; r )</I> if we wish to specify its radius. The inequalities <I>p-r &lt; x &lt; p+r</I> are equivalent to <I>–r&lt;x-p&lt;r,</I> and to </FONT><I>∣<FONT face="Times New Roman">x-p</FONT></I><I>∣<FONT face="Times New Roman">&lt; r</FONT></I><FONT face="Times New Roman">. Thus <I>N ( p; r )</I> consists of all points <I>x</I> whose distance from <I>p</I> is less than <I>r</I>.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  In the next definition, we assume that <I>A</I> is a real number and that <I>f</I> is a function defined on some neighborhood of a point <I>p</I> (except possibly at <I>p</I> ) . The function may also be defined at <I>p</I> but this is irrelevant in the definition.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  Definition of limit of a function.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  The symbolism</FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>         </FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT face="Times New Roman"><FONT size=3><I>f ( x ) =  A</I>  or  [<I>  f ( x )</I> </FONT></FONT><FONT size=3><I>→<FONT face="Times New Roman"> A </FONT></I><FONT face="Times New Roman">as<I> x</I></FONT><I>→<FONT face="Times New Roman"> p </FONT></I><FONT face="Times New Roman">]<I> <p></p></I></FONT></FONT></P>
<P ><FONT face="Times New Roman" size=3>means that for every neighborhood <I>N<SUB>1</SUB> ( A )</I> there is some neighborhood <I>N<SUB>2</SUB> ( p)</I> such that </FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">        <I>f ( x )</I>  </FONT>∈<FONT face="Times New Roman"> <I>N<SUB>1</SUB> ( A )  </I>whenever <I> x </I></FONT>∈<FONT face="Times New Roman"> <I>N<SUB>2</SUB> ( p )  </I>and<I>  x </I></FONT>≠<I><FONT face="Times New Roman"> p  (*)<p></p></FONT></I></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3><I>  </I>The first thing to note about this definition is that it involves two neighborhoods,<I> N<SUB>1</SUB> ( A) </I>and </FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3><I>N<SUB>2</SUB> ( p)</I> . The neighborhood <I>N<SUB>1</SUB> ( A)</I> is specified first; it tells us how close we wish <I>f ( x )</I> to be to the limit <I>A</I>. The second neighborhood, <I>N<SUB>2</SUB> ( p ),</I> tells us how close x should be to <I>p</I> so that <I>f ( x ) </I>will be within the first neighborhood <I>N<SUB>1</SUB> ( A)</I>. The essential part of the definition is that, for every <I>N<SUB>1</SUB> ( A),</I> no matter how small, there is some neighborhood <I>N<SUB>2</SUB> (p)</I> to satisfy (*). In general, the neighborhood <I>N<SUB>2</SUB> ( p)</I> will depend on the choice of <I>N<SUB>1</SUB> ( A). </I>A neighborhood <I>N<SUB>2</SUB> ( p )</I> that works for one particular <I>N<SUB>1</SUB> ( A) </I>will also work, of course, for every larger <I>N<SUB>1</SUB> ( A), </I>but it may not be suitable for any smaller <I>N<SUB>1</SUB> ( A).</I></FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>   The definition of limit can also be formulated in terms of the radii of the neighborhoods </FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"><I>N<SUB>1</SUB> ( A)</I> and<I> N<SUB>2</SUB> ( p )</I>. It is customary to denote the radius of <I>N<SUB>1</SUB> ( A) </I>by</FONT>ε<FONT face="Times New Roman">and the radius of <I>N<SUB>2</SUB> ( p)</I> by </FONT>δ<FONT face="Times New Roman">.The statement <I>f ( x )</I> </FONT>∈<FONT face="Times New Roman"> <I>N<SUB>1</SUB> ( A ) </I>is equivalent to the inequality </FONT><I>∣</I><FONT face="Times New Roman">f ( x ) – A</FONT><I>∣</I><FONT face="Times New Roman">&lt;</FONT>ε<FONT face="Times New Roman">,and the statement <I>x </I></FONT>∈<FONT face="Times New Roman"> <I>N<SUB>1</SUB> ( A) ,x </I></FONT>≠<FONT face="Times New Roman"><I> p ,</I>is equivalent to the inequalities 0<I> &lt;</I></FONT><I>∣<FONT face="Times New Roman"> x-p</FONT></I><I>∣</I><FONT face="Times New Roman">&lt;</FONT>δ<FONT face="Times New Roman">. Therefore, the definition of limit can also be expressed as follows:</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>  The symbol </FONT></FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><FONT face="Times New Roman"><FONT size=3><I>f ( x ) = A</I> means that for every</FONT></FONT><FONT size=3>ε<FONT face="Times New Roman">&gt; 0, there is a</FONT>δ<FONT face="Times New Roman">&gt; 0 such that</FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">           </FONT><I>∣<FONT face="Times New Roman">f ( x ) – A</FONT></I><I>∣</I><FONT face="Times New Roman">&lt;</FONT>ε<FONT face="Times New Roman"> whenever 0 &lt;</FONT><I>∣<FONT face="Times New Roman">x – p</FONT></I><I>∣</I><FONT face="Times New Roman">&lt;</FONT>δ</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">  “One-sided” limits may be defined in a similar way. For example, if <I>f ( x </I>) </FONT><I>→<FONT face="Times New Roman">A</FONT></I><FONT face="Times New Roman"> as <I>x</I></FONT><I>→<FONT face="Times New Roman"> p</FONT></I><FONT face="Times New Roman"> through values greater than <I>p</I>, we say that A is right-hand limit of <I>f</I> at <I>p</I>, and we indicate this by writing</FONT></FONT></P>
<P ><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><I><FONT face="Times New Roman"><FONT size=3>f ( x )  =  A<p></p></FONT></FONT></I></P>
<P ><FONT face="Times New Roman" size=3>In neighborhood terminology this means that for every neighborhood <I>N<SUB>1</SUB> ( A) ,</I>there is some neighborhood <I>N<SUB>2</SUB>( p) </I>such that</FONT></P>
<P ><FONT size=3><FONT face="Times New Roman"><I>f ( x )</I> </FONT>∈<FONT face="Times New Roman"> <I>N<SUB>1</SUB> ( A)   </I>wheneve<I>r  x </I></FONT>∈<FONT face="Times New Roman"><I> N<SUB>1</SUB> ( A)  </I>and<I>  x &gt; p<p></p></I></FONT></FONT></P>
<P ><FONT size=3><FONT face="Times New Roman">   Left-hand limits, denoted by writing <I>x</I></FONT><I>→<FONT face="Times New Roman"> p<SUP>-</SUP>, </FONT></I><FONT face="Times New Roman">are similarly defined by restricting <I>x </I>to values less than <I>p</I>.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>   If f has a limit <I>A</I> at <I>p</I>, then it also has a right-hand limit and a left-hand limit at <I>p</I>, both of these being equal to <I>A</I>. But a function can have a right-hand limit at <I>p</I> different from the left-hand limit.</FONT></FONT></P>
<P ><FONT face="Times New Roman"><FONT size=3>   The definition of continuity of a function.</FONT></FONT></P>
<P >
<P ><FONT size=3><FONT face="Times New Roman"><p></p></FONT></FONT></P><FONT size=3><FONT face="Times New Roman"></FONT></FONT></P>
 楼主| 发表于 2004-5-6 09:26:49 | 显示全部楼层
< 0cm 0cm 0pt"><FONT face="Times New Roman"><FONT size=3>   In the definition of limit we made no assertion about the behaviour of <I>f</I> at the point <I>p</I> itself. Moreover, even if <I>f</I> is defined at <I>p</I>, its value there need not be equal to the limit <I>A</I>. However, if it happens that <I>f</I> is defined at <I>p</I> and if it also happens that <I>f ( p ) = A</I>, then we say the function f is continuous at <I>p</I>. In other words, we have the following definition.</FONT></FONT></P>< 0cm 0cm 0pt"><FONT face="Times New Roman"><FONT size=3>   Definition of continuity of a function at a point.</FONT></FONT></P>< 0cm 0cm 0pt"><FONT face="Times New Roman"><FONT size=3>   A function f is said to be continuous at a point <I>p</I> if</FONT></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"><FONT size=3>   ( a ) <I>f </I>is defined at <I>p</I>, and ( b ) </FONT></FONT><v:shape><v:imagedata><FONT face="Times New Roman" size=3></FONT></v:imagedata></v:shape><I><FONT face="Times New Roman"><FONT size=3>f ( x ) = f ( p )<p></p></FONT></FONT></I></P><P 0cm 0cm 0pt"><FONT face="Times New Roman" size=3>This definition can also be formulated in term of neighborhoods. A function f is continuous at p if for every neighborhood <I>N<SUB>1</SUB> ( f(p))</I> there is a neighborhood <I>N<SUB>2</SUB> (p)</I> such that </FONT></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">         <I>f ( </I>x ) </FONT>∈<FONT face="Times New Roman"> <I>N<SUB>1</SUB> ( f (p))  </I>whenever   <I> x </I></FONT>∈<FONT face="Times New Roman"> <I>N<SUB>2</SUB> ( p).<p></p></I></FONT></FONT></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">In the</FONT>ε<FONT face="Times New Roman">-</FONT>δ<FONT face="Times New Roman">terminology , where we specify the radii of the neighborhoods, the definition of continuity can be restated ad follows:</FONT></FONT></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">   Function <I>f </I>is continuous at <I>p</I> if for every </FONT>ε<FONT face="Times New Roman">&gt; 0 ,there is a</FONT>δ<FONT face="Times New Roman">&gt; 0 such that</FONT></FONT></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">         </FONT><I>∣<FONT face="Times New Roman">f</FONT></I><FONT face="Times New Roman"> <I>( x ) – f ( p )</I></FONT><I>∣</I><FONT face="Times New Roman">&lt; </FONT>ε<FONT face="Times New Roman"> whenever </FONT><I>∣<FONT face="Times New Roman">x – p</FONT></I><I>∣</I><FONT face="Times New Roman">&lt; </FONT>δ</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"><FONT size=3>   In the rest of this lesson we shall list certain special properties of continuous functions that are used quite frequently. Most of these properties appear obvious when interpreted geometrically ; consequently many people are inclined to accept them ad self-evident. However, it is important to realize that these statements are no more self-evident than the definition of continuity itself, and therefore they require proof if they are to be used with any degree of generality. The proofs of most of these properties make use of the least-upper bound axiom for the real number system.</FONT></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"><FONT size=3>  THEOREM 1. (Bolzano’s theorem) Let <I>f </I>be continuous at each point of a closed interval [<I>a, b</I>] and assume that <I>f ( a )</I> an <I>f ( b )</I> have opposite signs. Then there is at least one c in the open interval (<I>a ,b</I>) such that <I>f ( c )</I> = 0.</FONT></FONT></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">  THEOREM 2. Sign-preserving property of continuous functions. Let <I>f </I>be continuious at <I>c</I> and suppose that <I>f ( c )</I> </FONT>≠<FONT face="Times New Roman"> 0. Then there is an interval (<I>c-</I></FONT>δ<I><FONT face="Times New Roman">,c +</FONT></I>δ<FONT face="Times New Roman">) about <I>c </I>in which f has the same sign as<I> f ( c ).<p></p></I></FONT></FONT></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">  THEOREM 3. Let f be continuous at each point of a closed interval [a, b]. Choose two arbitrary points<I> x<SUB>1</SUB> &lt;<SUB>  </SUB>x<SUB>2</SUB></I> in [a, b] such that <I>f ( x<SUB>1 </SUB>) </I></FONT><I>≠<FONT face="Times New Roman"> f ( x<SUB>2 </SUB>)</FONT></I><FONT face="Times New Roman"> . Then f takes every value between <I>f ( x</I><SUB>1</SUB> ) and <I>f</I> <I>(x<SUB>2</SUB> )</I> somewhere in the interval ( <I>x<SUB>1,</SUB> x<SUB>2 </SUB></I>).</FONT></FONT></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">  THEOREM 4. Boundedness theorem for continuous functions. Let f be continuous on a closed interval [<I>a, b</I>]. Then f is bounded on [<I>a, b</I>]. That is , there is a number M &gt; 0, such that</FONT><I>∣<FONT face="Times New Roman">f ( x )</FONT></I><I>∣≤</I><FONT face="Times New Roman"> M for all <I>x</I> in [<I>a, b</I>].</FONT></FONT></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">  THEOREM 5. (extreme value theorem) Assume <I>f </I>is continuous on a closed interval [<I>a, b</I>]. Then there exist points <I>c</I> and <I>d</I> in [<I>a, b</I>] such that <I>f ( c ) </I>= sup <I>f </I>and <I>f ( d ) </I>= inf  <I>f </I>.</FONT></FONT></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman">  Note. This theorem shows that if <I>f </I>is continuous on [<I>a, b</I>], then sup <I>f</I> is its absolute maximum, and inf <I>f</I> is its absolute minimum.</FONT></FONT></P><P 0cm 0cm 0pt"><FONT size=3><FONT face="Times New Roman"> <p></p></FONT></FONT></P>
 楼主| 发表于 2004-5-6 09:27:05 | 显示全部楼层
< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><FONT face="Times New Roman"><B>Vocabulary</B><p></p></FONT></P>< 0cm 0cm 0pt"><FONT face="Times New Roman">continuity    </FONT>连续性<FONT face="Times New Roman">                      assume        </FONT>假定<FONT face="Times New Roman">,</FONT>取<FONT face="Times New Roman"> </FONT></P>< 0cm 0cm 0pt"><FONT face="Times New Roman">continuous   </FONT>连续的<FONT face="Times New Roman">                      specify        </FONT>指定<FONT face="Times New Roman">, </FONT>详细说明</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">continuous function   </FONT>连续函数<FONT face="Times New Roman">             statement      </FONT>陈述<FONT face="Times New Roman">,</FONT>语句</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">intuitive      </FONT>直观的<FONT face="Times New Roman">                      right-hand limit   </FONT>右极限</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">corresponding  </FONT>对应的<FONT face="Times New Roman">                     left-hand limit  </FONT>左极限</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">correspondence  </FONT>对应<FONT face="Times New Roman">                      restrict        </FONT>限制于</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">graph        </FONT>图形<FONT face="Times New Roman">                        assertion      </FONT>断定</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">approach     </FONT>趋近<FONT face="Times New Roman">,</FONT>探索<FONT face="Times New Roman">,</FONT>入门<FONT face="Times New Roman">               consequently    </FONT>因而<FONT face="Times New Roman">,</FONT>所以</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">tend to       </FONT>趋向<FONT face="Times New Roman">                        prove          </FONT>证明</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">regardless    </FONT>不管<FONT face="Times New Roman">,</FONT>不顾<FONT face="Times New Roman">                    proof          </FONT>证明</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">discontinuous  </FONT>不连续的<FONT face="Times New Roman">                    bound         </FONT>限界</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">jump discontinuity </FONT>限跳跃不连续<FONT face="Times New Roman">             least upper bound    </FONT>上确界</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">mathematician   </FONT>科学家<FONT face="Times New Roman">                    greatest lower bound  </FONT>下确界</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">formulate      </FONT>用公式表示<FONT face="Times New Roman">,</FONT>阐述<FONT face="Times New Roman">             boundedness       </FONT>有界性</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">limit          </FONT>极限<FONT face="Times New Roman">                       maximum       </FONT>最大值</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Interval        </FONT>区间<FONT face="Times New Roman">                      minimum       </FONT>最小值</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">open interval    </FONT>开区间<FONT face="Times New Roman">                    extreme value     </FONT>极值</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">equation       </FONT>方程<FONT face="Times New Roman">                       extremum       </FONT>极值</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">neighborhood   </FONT>邻域<FONT face="Times New Roman">                       increasing function   </FONT>增函数</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">midpoint       </FONT>中点<FONT face="Times New Roman">                       decreasing function   </FONT>减函数</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">symmetric      </FONT>对称的<FONT face="Times New Roman">                     strict              </FONT>严格的</P><P 0cm 0cm 0pt; tab-stops: 216.0pt"><FONT face="Times New Roman">radius         </FONT>半径<FONT face="Times New Roman">(</FONT>单数<FONT face="Times New Roman">)                   uniformly continuous    </FONT>一致连续</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">radii          </FONT>半径<FONT face="Times New Roman">(</FONT>复数<FONT face="Times New Roman">)                   monotonic      </FONT>单调的</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">inequality       </FONT>不等式<FONT face="Times New Roman">                     monotonic function    </FONT>单调函数</P><P 0cm 0cm 0pt"><FONT face="Times New Roman">equivalent </FONT>等价的</P><P 0cm 0cm 0pt"><FONT face="Times New Roman"><I>  </I>    </FONT></P>
 楼主| 发表于 2004-5-6 09:27:19 | 显示全部楼层
< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><FONT face="Times New Roman"><B>Notes</B><p></p></FONT></P>< 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l61 level1 lfo9"><FONT face="Times New Roman">1.       It wad not until late in the 18th century that discontinuous functions began appearing in connection with various kinds of physical problems.</FONT></P>< 0cm 0cm 0pt 18pt">意思是<FONT face="Times New Roman">:</FONT>直到十八世纪末<FONT face="Times New Roman">,</FONT>不连续函数才开始出现于与物理学有关的各类问题中<FONT face="Times New Roman">.</FONT></P><P 0cm 0cm 0pt 18pt">这里<FONT face="Times New Roman">It was not until …that</FONT>译为“直到<FONT face="Times New Roman">……</FONT>才”</P><P 0cm 0cm 0pt 18pt; TEXT-INDENT: -18pt; tab-stops: list 18.0pt; mso-list: l61 level1 lfo9"><FONT face="Times New Roman">2.       </FONT><FONT face="Times New Roman">The symbol </FONT><v:shapetype><v:stroke joinstyle="miter"></v:stroke><v:formulas><v:f eqn="if lineDrawn pixelLineWidth 0"></v:f><v:f eqn="sum @0 1 0"></v:f><v:f eqn="sum 0 0 @1"></v:f><v:f eqn="prod @2 1 2"></v:f><v:f eqn="prod @3 21600 pixelWidth"></v:f><v:f eqn="prod @3 21600 pixelHeight"></v:f><v:f eqn="sum @0 0 1"></v:f><v:f eqn="prod @6 1 2"></v:f><v:f eqn="prod @7 21600 pixelWidth"></v:f><v:f eqn="sum @8 21600 0"></v:f><v:f eqn="prod @7 21600 pixelHeight"></v:f><v:f eqn="sum @10 21600 0"></v:f></v:formulas><v:path connecttype="rect" gradientshapeok="t" extrusionok="f"></v:path><lock aspectratio="t" v:ext="edit"></lock></v:shapetype><v:shape><v:imagedata><FONT face="Times New Roman"></FONT></v:imagedata></v:shape><FONT face="Times New Roman"><I>f ( x ) = A</I> means that for every </FONT>ε<FONT face="Times New Roman">&gt; 0 ,there is a </FONT>δ<FONT face="Times New Roman">&gt; 0, such that</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt; mso-char-indent-count: 3.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">|<I>f( x ) - A|&lt;</I></FONT><I>ε</I><FONT face="Times New Roman"> whenever <I>0 &lt;</I>|<I> x – p </I>|<I>&lt;</I></FONT><I>δ</I></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt; mso-char-indent-count: 3.0; mso-char-indent-size: 10.5pt">注意此种句型<FONT face="Times New Roman">.</FONT>凡涉及极限的其它定义<FONT face="Times New Roman">,</FONT>如本课中定义函数在点<FONT face="Times New Roman">P</FONT>连续及往后出现的关于收敛的定义等<FONT face="Times New Roman">,</FONT>都有完全类似的句型<FONT face="Times New Roman">,</FONT>参看附录<FONT face="Times New Roman">IV.</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt; mso-char-indent-count: 3.0; mso-char-indent-size: 10.5pt">有时句中<FONT face="Times New Roman">there is</FONT>可换为<FONT face="Times New Roman">there exists; such that</FONT>可换为<FONT face="Times New Roman">satisfying; whenever</FONT>换成<FONT face="Times New Roman">if</FONT>或<FONT face="Times New Roman">for.</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">3. Let…and assume (suppose)…Then…</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt; mso-char-indent-count: 3.0; mso-char-indent-size: 10.5pt">这一句型是定理叙述的一种最常见的形式<FONT face="Times New Roman">;</FONT>参看附录<FONT face="Times New Roman">IV.</FONT>一般而语文课<FONT face="Times New Roman"> Let</FONT>假设条件的大前提<FONT face="Times New Roman">,assume (suppose)</FONT>是小前提<FONT face="Times New Roman">(</FONT>即进一步的假设条件<FONT face="Times New Roman">),</FONT>而<FONT face="Times New Roman">if</FONT>是对具体而关键的条件的使用语<FONT face="Times New Roman">.</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">4. Approach</FONT>在这里是“趋于”<FONT face="Times New Roman">,</FONT>“趋近”的意思<FONT face="Times New Roman">,</FONT>是及物动词<FONT face="Times New Roman">.</FONT>如<FONT face="Times New Roman">:</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 31.5pt; mso-char-indent-count: 3.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman"><I>f ( x ) </I>approaches <I>A </I>as <I>x</I> approaches <I>p</I>. Approach</FONT>有时可代以<FONT face="Times New Roman">tend to. </FONT>如<FONT face="Times New Roman"><I>f ( x )</I> tends to <I>A</I> as <I>x</I> tends to <I>p</I>.</FONT>值得留意的是<FONT face="Times New Roman">approach</FONT>后不加<FONT face="Times New Roman">to</FONT>而<FONT face="Times New Roman">tend</FONT>之后应加<FONT face="Times New Roman">to.</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">5. as close to <I>A</I> as we please = arbitrarily close to <I>A..</I></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P>
 楼主| 发表于 2004-5-6 09:27:33 | 显示全部楼层
< 0cm 0cm 0pt; TEXT-ALIGN: center" align=center><FONT face="Times New Roman"><B>Exercise</B><p></p></FONT></P>< 0cm 0cm 0pt"><FONT face="Times New Roman">I. Fill in each blank with a suitable word to be chosen from the words given below:</FONT></P>< 0cm 0cm 0pt; TEXT-INDENT: 48pt; mso-char-indent-count: 4.57; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">independent                  domain                   correspondence</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 48pt; mso-char-indent-count: 4.57; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">associates                    variable                   range</FONT></P><P 0cm 0cm 0pt 28.5pt; TEXT-INDENT: -18pt; tab-stops: list 28.5pt; mso-list: l14 level1 lfo11"><FONT face="Times New Roman">(a)    Let <I>y = f ( x )</I> be a function defined on [<I>a, b</I>]. Then</FONT></P><P 0cm 0cm 0pt 67.5pt; TEXT-INDENT: -36pt; tab-stops: list 67.5pt; mso-list: l14 level2 lfo11"><FONT face="Times New Roman">(i)                  <I>x</I> is called the ____________variable.</FONT></P><P 0cm 0cm 0pt 67.5pt; TEXT-INDENT: -36pt; tab-stops: list 67.5pt; mso-list: l14 level2 lfo11"><FONT face="Times New Roman">(ii)                <I>y</I> is called the dependent ___________.</FONT></P><P 0cm 0cm 0pt 67.5pt; TEXT-INDENT: -36pt; tab-stops: list 67.5pt; mso-list: l14 level2 lfo11"><FONT face="Times New Roman">(iii)               The interval [a, b] is called the ___________ of the function.</FONT></P><P 0cm 0cm 0pt 28.5pt; TEXT-INDENT: -18pt; tab-stops: list 28.5pt; mso-list: l14 level1 lfo11"><FONT face="Times New Roman">(b)    In set terminology, the definition of a function may be given as follows:</FONT></P><P 0cm 0cm 0pt 28.5pt"><FONT face="Times New Roman">Given two sets <I>X</I> and <I>Y</I>, a function <I>f : X </I></FONT><I>→<FONT face="Times New Roman"> Y</FONT></I><FONT face="Times New Roman"> is a __________which ___________with each element of <I>X</I> one and only one element of <I>Y.</I> </FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">II. a) Which function, the exponential function or the logarithmic function, has the property that it satisfies the functional equation</FONT></P><P 0cm 0cm 0pt; TEXT-INDENT: 78.75pt"><I><FONT face="Times New Roman">f ( xy ) = f ( x ) + f ( v )<p></p></FONT></I></P><P 0cm 0cm 0pt 21pt"><FONT face="Times New Roman">  b) Give the functional equation which will be satisfied by the function which you do not choose in (a).</FONT></P><P 0cm 0cm 0pt 21pt; TEXT-INDENT: -21pt; mso-char-indent-count: -2.0; mso-char-indent-size: 10.5pt"><FONT face="Times New Roman">III. Let <I>f</I> be a real-valued function defined on a set <I>S</I> of real numbers. Then we have the following two definitions:</FONT></P><P 0cm 0cm 0pt 52.5pt; TEXT-INDENT: -36pt; tab-stops: list 52.5pt; mso-list: l2 level1 lfo12"><FONT face="Times New Roman">i)                    <I>f</I> is said to be increasing on the set <I>S </I>if<I> f ( x ) &lt; f ( y )</I> for every pair of points <I>x </I>and <I>y </I>with <I>x &lt; y.</I></FONT></P><P 0cm 0cm 0pt 52.5pt; TEXT-INDENT: -36pt; tab-stops: list 52.5pt; mso-list: l2 level1 lfo12"><FONT face="Times New Roman">ii)                   <I>f </I>is said to have and absolute maximum on the set <I>S</I> if there is a point <I>c</I> in <I>S </I>such that <I>f ( x ) &lt; f ( c )</I> for all <I>x</I></FONT><I>∈<FONT face="Times New Roman"> S.</FONT></I></P><P 0cm 0cm 0pt 16.5pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">Now define</FONT></P><P 0cm 0cm 0pt 55.5pt; TEXT-INDENT: -18pt; tab-stops: list 55.5pt; mso-list: l2 level2 lfo12"><FONT face="Times New Roman">a)       a strictly increasing function;</FONT></P><P 0cm 0cm 0pt 55.5pt; TEXT-INDENT: -18pt; tab-stops: list 55.5pt; mso-list: l2 level2 lfo12"><FONT face="Times New Roman">b)      a monotonic function;</FONT></P><P 0cm 0cm 0pt 55.5pt; TEXT-INDENT: -18pt; tab-stops: list 55.5pt; mso-list: l2 level2 lfo12"><FONT face="Times New Roman">c)      the relative (or local ) minimum of <I>f </I>.</FONT></P><P 0cm 0cm 0pt 37.5pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt 37.5pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">IV. Translate theorems 1-3 into Chinese.</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">V. Translate the following definition into English:</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman">  </FONT>定义<FONT face="Times New Roman">:</FONT>设<FONT face="Times New Roman">E </FONT>是定义在实数集<FONT face="Times New Roman"> <I>E</I> </FONT>上的函数<FONT face="Times New Roman">,</FONT>那么<FONT face="Times New Roman">, </FONT>当且仅当对应于每一ε<FONT face="Times New Roman">&gt;0(</FONT>ε不依赖于<I><FONT face="Times New Roman">E</FONT></I>上的点<FONT face="Times New Roman">)</FONT>存在一个正数δ使得当<FONT face="Times New Roman"><I> p</I> </FONT>和<FONT face="Times New Roman"> <I>q</I> </FONT>属于<FONT face="Times New Roman">E</FONT>且<FONT face="Times New Roman">|<I>p –q</I>| &lt;</FONT>δ时有<FONT face="Times New Roman">|<I>f ( p ) – f ( q )</I>|&lt;</FONT>ε<FONT face="Times New Roman">,</FONT>则称<I><FONT face="Times New Roman">f</FONT></I>在<I><FONT face="Times New Roman">E</FONT></I>上一致连续<FONT face="Times New Roman">.</FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P><P 0cm 0cm 0pt"><FONT face="Times New Roman"> <p></p></FONT></P>
您需要登录后才可以回帖 登录 | 注-册-帐-号

本版积分规则

小黑屋|手机版|Archiver|数学建模网 ( 湘ICP备11011602号 )

GMT+8, 2024-4-27 00:04 , Processed in 0.056712 second(s), 18 queries .

Powered by Discuz! X3.4

Copyright © 2001-2021, Tencent Cloud.

快速回复 返回顶部 返回列表